Brownfields Phase II ESA Report Pigeon Property 1705 Route 128 Westford, Vermont

DEC SMS#2019-4863, EPA RFA 19093

July 24, 2020

Prepared for:

Chittenden County Regional Planning Commission 110 West Canal Street, Suite 202 Winooski, Vermont 05404

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001 www.leenv.net

LEE #19-138

Contents

1.0	EXECUTIVE SUMMARY	3
2.0	SITE INFORMATION	5
3.0	CURRENT USE OF THE SITE	6
4.0	CURRENT ADJOINING PROPERTY USES	6
5.0	SITE DESCRIPTION	6
6.0	LATITUDE/LONGITUDE	6
7.0	PROPERTY HISTORY	
8.0	SITE CONTAMINANT BACKGROUND	7
A.	Release Date and Description	7
B.	Release Report Date	8
C.	Release Response Actions	8
D.	Previous Environmental Documents	8
E.	Copy of Previous Environmental Documents	9
F.		
9.0	UPDATED CONCEPTUAL SITE MODEL	
A.	1	
B.	Potential Contamination Sources	11
C.		
D.	5	
E.		
F.	1 1	
G.		
10.0		
11.0		
12.0		
A.		
B.		
C.		
D.	11 5	
E.		
F.	1	
13.0		
14.0		
15.0		
A.	1	
B.	1	
C.	0 1	
16.0		
17.0		
18.0		
19.0		
20.0		
21.0	MAPS AND APPENDICES	23

1.0 EXECUTIVE SUMMARY

LE Environmental LLC (LEE) conducted a Brownfields Phase II Environmental Site Assessment (ESA) at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The ESA was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated February 25, 2020, approved March 6, 2020, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC). This work is supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

The Site includes a vacant residence and a former bus repair garage and gasoline filling station on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage. The Site was developed prior to 1858, and historic Site use has include residential, a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property, and a tannery was noted on the adjoining property to the west in 1869.

The Site is located on the north side of Route 128. The area immediately surrounding the Site is the town center of Westford, with closely spaced residential homes, a municipal office building, a public library, and a town common. The DEC indicates that the Site is in a designated "urban background" zone for soil contamination. The topography of the Site is fairly flat on its south side, near Route 128, and then slopes downward to the north, toward the Browns River. There is also a ravine on the eastern side of the Site, which contains an outlet drainage pipe for the town common's stormwater system. No odors or sheens were noted on the water exiting the outlet pipe. Portions of the northern and eastern ends of the property appear to have wetland vegetation.

Three structures are currently present on the property. The residence is a two-story, wood framed structure with a full basement. The garage is a single-story, wood framed structure, with a slab on-grade foundation. The third building is a small wood framed shed.

LEE prepared a Phase I Environmental Site Assessment (ESA) report for the property in September 2019, and three Recognized Environmental Conditions (RECs) were identified during the Phase I ESA:

1. Historic use of the property for bus/automotive repair and as a gasoline filling station.

- 2. Possible presence of an abandoned underground storage tank (UST).
- 3. Historic adjoining property use as a tannery.

A Phase II ESA was recommended to determine whether contamination is present on the Site due to the identified RECs.

This Phase II ESA included removal of the abandoned gasoline UST, soil boring advancement, groundwater monitoring well installation, soil sampling, groundwater sampling, and drinking water sampling. Soils are the Site consist of sand with varying amounts of silty overlaying dense, native clay. The clay contained distinct sand layers in each boring.

An abandoned, 1,100-gallon, gasoline UST at the Site was removed from the Site on June 2, 2020. The UST was a relic of the former gasoline filling station that operated on the Site from circa 1940 through the mid 1980s. The age of the UST and piping is not known, but it appeared to be at least 80 years old. The UST was a single-walled tank, and piping from other former USTs was also encountered in the excavation. The piping for the removed UST appeared to have been cut near the former pump island, and had paper stuffed in the end. It was buried approximately 1.5' to 2' below grade, and was found to be in failed condition upon removal, with extensive rust, pitting, and several large holes in the bottom of the UST. Groundwater was encountered at 6' below grade in the excavation, and a sheen was noted on the groundwater.

The photoionization detector PID readings ranged from 17.1 parts per million (ppm) in soil under the former dispenser island to 2,374 ppm at the top of the tank where piping (not attached to this tank) was found. PID readings ranging from 1,286 ppm to 1644 ppm were observed under the UST, which was also where groundwater was encountered.

A pipe with unknown purpose was noted on the southern wall of the UST excavation. The excavation could not be extended in this direction due to the presence of Route 128 and special permitting, traffic control and engineering would be required to dig in this area.

The depth to water ranged from 4.45' below grade in the southern portion of the Site to 11.59' below grade in the northern portion of the Site. The overall groundwater flow beneath the Site appears to be northerly. The approximate hydraulic gradient is approximately 10% on the southern portion of the Site and 16% in the central and northern portions of the Site.

Groundwater is impacted with petroleum related Volatile Organic Compounds (VOCs) at concentrations above the Vermont Groundwater Enforcement Standards (VGES) and above the vapor intrusion standards for groundwater in the vicinity of the former UST, and the plume extends northerly at least 200 feet. The limits of the

dissolved-phase contaminant plume were not defined by this investigation. The overall low permeability of the native soils implies the migration of the contaminant plume will be limited. The low permeability of the soils was evident during sampling, where very low recharge was noted in the groundwater monitoring wells.

Shallow and deep soils are impacted with petroleum contamination in the southern portion of the property, near the former UST location, and in the parking area to the east. Shallow soils are impacted with Polycyclic Aromatic Hydrocarbons (PAHs) in the area to the north of the garage. The limits of the contamination were not defined by this investigation.

No VOCs were reported in the drinking water sample obtained during this Phase II ESA.

LEE has developed the following recommendations during this Phase II ESA.

Additional delineation of soil and groundwater contamination should be completed. Additional groundwater sampling of the existing groundwater monitoring wells should be performed prior to delineation. A soil vapor investigation should be performed to ensure the contamination detected is not impacting the indoor air quality in the residence and garage. In addition, soil vapor should be investigated in areas slated for redevelopment. A suspect pipe near Route 128 should be investigated via a geophysical investigation in the roadway.

Once delineation is completed, an evaluation of corrective action alternatives (ECAA) and a corrective action plan (CAP) could be prepared per the requirements of Subchapter 6 of the DEC's I-Rule.

2.0 SITE INFORMATION

LE Environmental LLC (LEE) conducted a Brownfields Phase II Environmental Site Assessment (ESA) at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The ESA was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated February 25, 2020, approved March 6, 2020, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC). This work is supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

Site Information Table					
Site Owner Name: Pigeon Family Living Trust – George Pigeon					
Site Owner Address	1705 Route 128, Westford, VT 05494				
Site Owner E-mail	gepigeon@msn.com				
Site Owner Phone	(802) 355-6628				

3.0 CURRENT USE OF THE SITE

The Site includes a vacant residence and a former bus garage on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage.

4.0 CURRENT ADJOINING PROPERTY USES

Current uses of the adjoining properties are as follows:

North: ResidentialSouth: Town Common

East: Multi-family residentialWest: Municipal Offices

5.0 SITE DESCRIPTION

The Site is located on the north side of Route 128. The area immediately surrounding the Site is the town center of Westford, with closely spaced residential homes, a municipal office building, a public library, and a town common. The DEC indicates that the Site is in a designated "urban background" zone for soil contamination. The topography of the Site is fairly flat on its south side, near Route 128, and then slopes downward to the north, toward the Browns River. There is also a ravine on the eastern side of the Site, which contains an outlet drainage pipe for the town common's stormwater system. No odors or sheens were noted on the water exiting the outlet pipe. Portions of the northern and eastern ends of the property appear to have wetland vegetation.

Three structures are currently present on the property. The residence is a twostory, wood framed structure with a full basement. The garage is a single-story, wood framed structure, with a slab on-grade foundation. The third building is a small wood framed shed.

6.0 LATITUDE/LONGITUDE

The Site coordinates are The Site coordinates are 44° 36' 45.78" north latitude and 73° 0' 34.99" west longitude.

7.0 PROPERTY HISTORY

The Site was developed prior to 1858. Historic Site use has included residential, with a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property. A building was noted on or near the northeastern property line on historic (1869 and 1915) maps. The building was gone by 1948. A tannery was noted on the adjoining property to the west in 1869.

A geophysical investigation performed at the Site revealed the possible presence of an underground storage tank (UST) near Route 128, and several smaller buried metal objects.

LEE prepared a Phase I ESA report for the property in September 2019, and three Recognized Environmental Conditions (RECs) were identified during the Phase I ESA:

- 1. Historic use of the property for bus/automotive repair and as a gasoline filling station.
- 2. Possible presence of an abandoned UST.
- 3. Historic adjoining property use as a tannery.

A Phase II ESA was recommended to determine whether contamination is present on the Site due to the identified RECs.

8.0 SITE CONTAMINANT BACKGROUND

A. Release Date and Description

Evidence of releases of hazardous substances and petroleum products at the Site was observed during this Phase II ESA. Exceedances of regulatory residential soil standards are noted below:

- 1. Elevated PID readings, stained soils, and strong petroleum odors were noted in the gasoline UST excavation, including at shallow depths near the surface. Additionally, soils beneath the former UST had concentrations of Benzene, Ethylbenzene, Xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and Naphthalene above residential regulatory standards. The fuel ID sample collected from underneath the UST indicated the presence of leaded gasoline.
- 2. Shallow and deep soils in the former dispenser area also had elevated PID readings, staining, and strong petroleum odors. Concentrations of Benzene and Naphthalene exceeded residential regulatory standards in the deep soils, and the Benzo(a)pyrene concentration exceeded residential regulatory standards in the shallow soils.

- 3. Soils in the parking area on the southeastern portion of the Site, exhibited elevated PID readings, stained soils, and weathered petroleum odors. The Benzo(a)pyrene concentration in the deep soil sample collected from this area exceeded residential regulatory standards in the shallow soils.
- 4. Soils in soil boring SB-5 exhibited elevated PID readings and petroleum odors at the groundwater interface. However, the contaminant concentrations reported from the soil sample did not exceed residential regulatory standards.
- 5. Shallow soil samples obtained from SB-6 and SB-7, which were located north of the garage, where machinery was stored in the past, had concentrations of Polycyclic aromatic hydrocarbons (PAHs) above residential regulatory standards, and the toxicity equivalency quotient (TEQ) values exceeded DEC's Statewide Urban Background concentration.
- 6. Groundwater in the former UST location had concentrations of MtBE, Benzene, Toluene, Ethylbenzene, Xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, Naphthalene, Arsenic, and Lead in exceedance of the Vermont Groundwater Enforcement Standards (VGES).
- 7. Downgradient monitoring well MW-2 and MW-5 had concentrations of Benzene and Naphthalene in exceedance of the VGES, and concentrations of Ethylbenzene were also reported above the VGES at MW-2.

B. Release Report Date

The petroleum release from the gasoline UST was reported via a phone call to the spill number and the Sites Management Section at the DEC on June 2, 2020. All additional contaminant exceedances are being reported via submittal of this document to the DEC.

C. Release Response Actions

No release response actions have been completed for the reported releases.

D. Previous Environmental Documents

The following previous environmental documents exist for this Site and are on file with the DEC:

- Phase I Environmental Site Assessment Report dated September 23, 2019.
- Site-Specific Quality Assurance Project Plan Addendum dated February 25, 2020.
- UST Removal, Pigeon Property, 1705 Route 128, Westford, Vermont, June 25, 2020.

E. Copy of Previous Environmental Documents

The referenced Phase I ESA report, SSQAPP Addendum, and Tank Removal report are on-file with the DEC in Montpelier, Vermont.

F. List of Governmental Records Reviewed

LEE reviewed various governmental records during and preceding this Phase II ESA, including records reviewed during the Phase I ESA:

- Town of Westford Land Records
- State of Vermont Department of Environmental Conservation Hazardous Sites List, Solid Waste Facilities list, Leaking UST and Above-ground Storage Tank database, Brownfields List
- EPA National Priorities List (NPL), Proposed NPL, Delisted NPL, CERCLIS, RCRA CORRACTS, RCRA TSDF, RCRA Generators database, Institutional Controls inventory, Emergency Response Notification System

9.0 UPDATED CONCEPTUAL SITE MODEL

A. Updated Site Conceptual Model

The area immediately surrounding the Site is the town center of Westford, with closely spaced residential homes, a municipal office building, a public library, and a town common. The topography of the Site is fairly flat on its south side, near Route 128, and then slopes downward to the north, toward the Browns River. There is also a ravine on the eastern side of the Site, which contains an outlet drainage pipe for the town common's stormwater system. No odors or sheens have been noted on the water exiting the outlet pipe.

The Site was developed as of the earliest record located thus far (1858). The property use has included residential with a gasoline filling station and automotive and bus repair. According to the current owner, the gasoline tanks were no longer used after circa 1985. A small store was also once present on the southeastern portion of the Site. A tannery was present on the adjoining property to the west on an 1869 map. It is unknown how long the tannery operated.

The on-Site residence is heated with fuel oil. The garage is not currently heated but appears to have been heated with wood, propane, and/or fuel oil historically. The buildings are served by a private dug supply well and at least one septic system. The configuration and location of the septic system is not known.

Bedrock was not encountered in this Phase II ESA. According to the most recent geologic map of Vermont, the bedrock in the vicinity of the Site consists of Cambrian

and Neoproterozoic aged schist in the Pinnacle formation and the overburden deposits in the area of the Site are mapped as boulders in clay.¹

The Site is approximately 470 feet above current sea level on the southern portion of the Site, and drops to approximately 435 feet above current sea level at the northern terminus of the parcel boundary. This area has undergone extensive deposition and erosional processes through recent glacial events. The retreat of the Laurentide Ice Sheet led to the formation of glacial Lake Vermont approximately 13,500 years ago. The elevation of the lake surface was approximately 620 feet above sea level, significantly higher than the elevation of the current Lake Champlain. Streams flowing off the melted glacier deposited many sediments, with larger sediments deposited near the front of the glacier and finer grained sediments deposited away from the front of the glacier. Clay and silt varves were deposited in the calmer portions of Lake Vermont.²

The data obtained during soil borings indicate the soils at the Site consist of sand with varying amounts of silty overlaying dense, native clay. The clay contained distinct sand layers in each boring, and distinct varves were noted at SB-7. This data suggests the Site was likely located in a calmer portion of Lake Vermont. Sand layers noted in the clay point to periods of higher energy deposition in the lake.

The depth to water ranged from 4.45' below grade at MW-1 to 11.59' below grade at MW-3. The overall groundwater flow beneath the Site appears to be to the north. The approximate hydraulic gradient is approximately 10% on the southern portion of the Site and 16% in the central and northern portions of the Site. The sand layers noted above are likely the mechanism for the migration of the dissolved phase contamination through the Site. The overall low permeability of the native soils implies the migration of the contaminant plume will be limited. The low permeability of the soils was evident during sampling, where very low recharge was noted in the groundwater monitoring wells.

Shallow and deep soils are impacted with petroleum contamination in the southern portion of the property, near the former UST location, and in the parking area to the east. Shallow soils are impacted with PAHs in the area to the north of the garage. The limits of the contamination were not defined by this investigation.

Groundwater is impacted with petroleum related VOCs at concentrations above the VGES and the vapor intrusion standards for groundwater in the vicinity of the former UST, and the plume extends northerly at least 200 feet. The limits of the dissolved-phase contaminant plume were not defined by this investigation.

¹ ANR Atlas.

² S.F. Wright

B. Potential Contamination Sources

The most apparent source(s) of contamination at the Site include the leaking gasoline UST removed in June 2020, historic USTs, and historic use and storage of hazardous substances and petroleum products.

C. Potential Receptors

Potential receptors of contamination include Site users. Shallow soils are impacted with petroleum and PAHs at the Site. The limits of the dissolved-phase petroleum contamination plume has not been fully defined by this assessment, nor have the limits of the shallow soil PAH contamination. The groundwater plume is not likely to migrate off-Site due to the low permeability soils on the Site. The Site is currently vacant and not used.

D. Utility Corridors

No buried underground utilities are known to exist on or in the immediate vicinity of the Site, except the water line from the well to the residence and garage, and the septic systems for the buildings.

E. Water Bodies and Wetlands

The Browns River abuts the property on its north side, and is approximately 450' from the former UST location. There is also an unnamed tributary that runs along the western portion of the property, and this tributary is approximately 200 feet northwest of the former UST location. The ANR Natural Resources Atlas does not depict Vermont State Wetland Inventory (VSWI) or wetlands advisory areas on the Site. However, apparent wetland vegetation was noted on portions of the Site. Based on the results of the investigation, surface water does not appear to be at risk. However, the groundwater plume should continue to be monitored to ensure it does not impact the waterways in the future.

F. Water Supplies

The Site and nearby properties are served by private wells. Approximately 28 water supply wells are depicted on the ANR Natural Resources Atlas within a quarter-mile of the Site. The on-Site supply well was sampled and tested for VOCs and no exceedances of regulatory standards were noted. The data suggests off-Site supply wells are unlikely to be impacted from contamination at this Site. However, the groundwater plume should continue to be monitored to ensure it does not impact the nearby water supplies in the future.

G. Site Users

The Site is currently unoccupied and not being used except for storage by the owners of the property. Portions of the area have shallow soil contamination and future Site users could come into contact with this soil. A soil gas sampling investigation should be conducted to determine if the residence and/or garage have elevated levels of VOCs in indoor air.

10.0 WORK PLAN DEVIATIONS

All of the work described in the approved SSQAPP Addendum dated February 25, 2020 was performed as described with the following deviations:

- A soil sample was not collected from soil boring SB-3, because the soil boring was installed in the same location at the former gasoline UST, and a soil sample and duplicate were obtained from this location during the UST removal.
- Additional soil samples were obtained from soil boring SB-2 and SB-4, because contamination was noted both at the surface and at deeper depths.
- The soil sample collected from SB-5 could not be obtained from the zone with the highest PID reading due to poor sample recovery. The laboratory sample was instead collected from next sampling run.
- A PCB sample was obtained from soil boring SB-1 in order to get a background PCB level in the event that PCBs were found around the garage.
- The lack of recharge in the groundwater monitoring wells prohibited the collection of metals samples at MW-3 and MW-5.

11.0 SAMPLE COLLECTION DOCUMENTATION

The following tables outline the location of samples, the method of collection, and the well or soil boring identification number.

Soil Samples

Sample ID Depth (ft bg)		Analytical Methods	Collection Method	
UST-1/Duplicate	6	VOCs via 8260C	Grab from Test Pit	
		PAHs via 8270D		
		RCRA 8 Metals via 6020		
		TPH Fuel ID via 8100		
SB-1	0-1.5	VOCs via 8260C	Grab from Sample Sleeve	
		PAHs via 8270D		
		RCRA 8 Metals via 6020		
		PCBs via 8082		
SB-2S	0-1.5	VOCs via 8260C	Grab from Sample Sleeve	
		PAHs via 8270D		
		RCRA 8 Metals via 6020		
		PCBs via 8082		

Soil Samples Continued...

		Joh Jampies Continueu	
SB-2D	13-15	VOCs via 8260C	Grab from Sample Sleeve
		PAHs via 8270D	
		RCRA 8 Metals via 6020	
SB-4S	0-1.5	VOCs via 8260C	Grab from Sample Sleeve
		PAHs via 8270D	_
		RCRA 8 Metals via 6020	
		PCBs via 8082	
SB-4D	9-11	VOCs via 8260C	Grab from Sample Sleeve
		PAHs via 8270D	•
		RCRA 8 Metals via 6020	
		PCBs via 8082	
SB-5/Duplicate	9-10	VOCs via 8260C	Grab from Sample Sleeve
		PAHs via 8270D	_
		RCRA 8 Metals via 6020	
		PCBs via 8082	
SB-6	0-1.5	VOCs via 8260C	Grab from Sample Sleeve
		PAHs via 8270D	_
		RCRA 8 Metals via 6020	
		PCBs via 8082	
SB-7	0-1.5	VOCs via 8260C	Grab from Sample Sleeve
		PAHs via 8270D	
		RCRA 8 Metals via 6020	
		PCBs via 8082	

Groundwater Samples

Sample ID	Analytical Methods	Collection Method
MW-1/Duplicate	VOCs via 8260C	Grab via Low Flow Sampling
	RCRA 8 Metals via 6020	
MW-2	VOCs via 8260C	Grab via Low Flow Sampling
	RCRA 8 Metals via 6020	
MW-3	VOCs via 8260C	Grab via Low Flow Sampling
MW-4	VOCs via 8260C	Grab via Low Flow Sampling
	RCRA 8 Metals via 6020	
MW-5	VOCs via 8260C	Grab via Low Flow Sampling

Drinking Water Sample

	U	
Sample ID	Analytical Methods	Collection Method
DWS-1	VOCs via 524.2	Grab from Pressure Tank

12.0 CONTAMINATED MEDIA CHARACTERIZATION

LEE performed a supplemental Phase II ESA consisting of a soil, groundwater and drinking water evaluation. The goal of this work was to determine whether the past use and storage of hazardous substances and petroleum products on the property have impacted soils, groundwater and/or drinking water. The future plans for development of the Site include possible construction of new municipal offices, and/or commercial and residential development. Therefore, all laboratory analytical data have been evaluated in the context of state and federal residential thresholds

for contaminated media. Photos showing the investigation locations are in Appendix *C.*

A. Gasoline UST Removal

On June 2, 2020, LEE conducted an environmental assessment of an abandoned, 1,100-gallon, gasoline UST at the Site. The UST was a relic of the former gasoline filling station that operated on the Site from circa 1940 through the mid 1980s. LEE arranged for and oversaw the UST removal and sampling. US Ecology of Williston, Vermont performed the excavation, UST cleaning and removal, backfilling, and waste disposal.

The age of the UST and piping is not known, but it appeared to be at least 80 years old. The owner was not aware there were any USTs left in the ground, and he remembered tanks being removed from the Site sometime in the 1980s or 1990s. The UST was a single-walled tank, and piping from other former USTs was also encountered in the excavation. The piping for the removed UST appeared to have been cut near the former pump island, and had paper stuffed in the end. It was buried approximately 1.5' to 2' below grade, and was found to be in failed condition upon removal, with extensive rust, pitting, and several large holes in the bottom of the UST. The UST was cleaned in place. Approximately 330 gallons of gasoline and water was pumped from the UST, and one 55-gallon drums of sludge was recovered during the cleaning. The UST bottom was at 6' below grade. The excavation measured 20' wide, 10' long and 6' deep upon completion. Groundwater was encountered at 6' below grade, and a sheen was noted on the groundwater.

Eleven soil samples were collected for field screening of volatile vapors using a calibrated Mini-RAE Lite photoionization detector equipped with a 10.6 eV bulb (PID). Soils consisted of sand and silt fill overlaying native clay. The PID readings ranged from 17.1 parts per million (ppm) in soil under the former dispenser island to 2,374 ppm at the top of the tank where piping (not attached to this tank) was found. PID readings ranging from 1,286 ppm to 1644 ppm were observed under the UST, which was also where groundwater was encountered. The following table outlines the PID readings obtained during the investigation. Sample locations are shown on the UST Removal Report in Appendix G.

UST Removal Soil Screening Samples

Sample ID	Location	Depth	PID Reading
SS-1	Top of Tank	0.5 feet	705.4 ppm
SS-2	Top of Tank	1.5 feet	61.0 ppm
SS-3	Under Dispenser	1.5 feet	17.1 ppm
SS-4	Side of Tank	2.5 feet	926.2 ppm
SS-5	Top of Tank	1.5 feet	2,374 ppm
SS-6	Side of Tank	1.5 feet	212.4 ppm
SS-7	Side of Tank	2.5 feet	755.8 ppm
SS-8	Side of Tank	2.5 feet	1,440 ppm
SS-9*	Bottom of Tank	6 feet	1,644 ppm
SS-10	Bottom of Tank	6 feet	1,624 ppm
SS-11	Bottom of Tank	6 feet	1,286 ppm

The soil sample with an asterisk (known as UST-1) was submitted to Eastern Analytical Inc. of Concord, NH for analysis of VOCs, PAHs, RCRA 8 metals, and TPH 8100 Fuel ID.

A pipe with unknown purpose was noted on the southern wall of the UST excavation. The excavation could not be extended in this direction due to the presence of Route 128 and special permitting, traffic control and engineering would be required to dig in this area.

B. Soil

Prior to the initiation of subsurface activities, LEE pre-marked the proposed boring locations and Dig Safe ticket number 20202304559 was obtained. A Site-Specific Health and Safety Plan was prepared and reviewed by field staff prior to work. The locations of the soil borings are noted on the Site Map.

On June 5, 2020, LEE oversaw advancement of seven soil borings at the locations shown on the attached maps. T&K Drilling of Troy, NH advanced soil borings SB-1 through SB-7 using a Geoprobe with a 2.25" x 3' stainless steel sampler. Continuous soil sampling was conducted during soil boring advancement. Soil samples were screened for VOCs using a calibrated PID.

The geoprobe soil borings were driven to depths ranging from 12' bg at SB-1 to 15' bg at SB-2 through SB-7. Soils at the Site consist of sand with varying amounts of silty overlaying native clay. The clay contained distinct sand layers in each boring, and varves were noted at SB-7.

Soil samples were collected from each boring at the zone with the highest PID reading or from 0-1.5 below grade if elevated PID readings were not noted. Exceptions to this include: no sample was obtained from SB-3 since UST-1 and a

duplicate were obtained from this location during the UST removal. Shallow and deep samples were obtained from SB-2 and SB-4 due to contamination being detected in shallow and deep horizons in those locations. A soil sample could not be obtained from the zone with the highest PID reading at SB-5 due to poor sample recovery, so the sample was collected beneath this zone, which had the second highest PID reading.

Laboratory analysis included the following constituents at SB-1, SB-2S, SB-2D, SB-4S, SB-4D, SB-5, SB-6, and SB-7:

- VOCs via EPA Method 8260c
- PAHs via EPA Method 8270d
- RCRA 8 Metals via EPA Method 6020

Laboratory analysis included the following constituents at SB-1, SB-2S, SB-4S, SB-4D, SB-5, SB-6, and SB-7:

Polychlorinated biphenyl compounds (PCBs) via EPA Method 8082

A duplicate soil sample was obtained from SB-5. Samples were submitted to EAI for analysis.

C. Groundwater

Groundwater monitoring wells were installed at five soil boring locations. The wells ranged in depth from 12' below grade at MW-5 to 15' below grade at MW-1 through MW-4. Each well consists of a 1" PVC monitoring well with a 10' length of 1" slotted screen spanning the water table. The wells are flush mounted with steel road box covers. Each well was developed following its installation with a peristaltic pump. The locations of the monitoring wells were measured/surveyed and incorporated into the attached Site maps. Soil boring and groundwater monitoring well construction logs are included in Appendix B.

On June 17, 2020, LEE collected groundwater samples using low-flow sampling techniques. Prior to groundwater sample collection, depth to water was measured with a water level indicator from the top of casing reference points. These data were used to calculate the water level elevations, and to determine the groundwater flow direction and horizontal gradient beneath the Site.

The depth to water ranged from 4.45' below grade at MW-1 to 11.59' below grade at MW-3. The overall groundwater flow beneath the Site appears to be to the north. The approximate hydraulic gradient is approximately 10% on the southern portion of the Site and 16% in the central and northern portions of the Site.

Groundwater samples were collected from the monitoring wells using a peristaltic pump and low flow sampling methods. Purging took place at approximately 200 milliliters per minute. Each well was purged dry fairly quickly, and sampling occurred following recharge. The recharge was very slow in monitoring wells MW-2, MW-3, MW-4, and MW-5. The groundwater samples were collected directly from the pump discharge tubing into laboratory-supplied pre-acidified sample containers.

Groundwater samples were analyzed for VOCs via EPA Method 8260c and RCRA 8 metals via EPA Method 6020. A duplicate sample was tested for VOCs and metals and a trip blank was analyzed for VOCs. Samples were submitted to EAI for analysis. There was insufficient water in monitoring well MW-3 and MW-5 to allow for collection of a sample for metals analysis.

D. Supply Well Sampling

LEE collected a water sample from the on-Site shallow water supply well on June 17, 2020. The sample was collected from the pressure tank in the basement. The sample was submitted to EAI for analysis of VOCs via EPA Method 524.2.

E. Other Media

No surface water, sediment, soil gas or indoor air testing was performed during this Phase II ESA.

F. Site-Specific Values

No site-specific values were proposed or generated during this Phase II ESA.

13.0 SITE-SPECIFIC RISK ASSESSMENT

No site-specific risk assessment was proposed or generated during this Phase II ESA.

14.0 MAPS

A Site location map, Site Map, Soil VOC Contaminant Map, Soil B(a)P TEQ Contaminant Map Groundwater Contour Map, Groundwater Contaminant Concentration Map, a Groundwater Contaminant Distribution Map for Naphthalene, and a current ANR Natural Resources Atlas map are attached.

15.0 DISCUSSION

A. Soil Sample Results

Soil analytical results were tabularized and compared with the soil standards contained in the 2019 I-Rule. A tabular presentation of the data is included in Appendix E. Following is a discussion of the soil sample results obtained during this Phase II ESA.

VOCs

Petroleum related VOCs are present in shallow and deep soils in the vicinity of the former gasoline UST (UST-1) and dispenser area (SB-2). Elevated PID readings, stained soils, and strong petroleum odors were noted in the gasoline UST excavation, including at shallow depths near the surface. Additionally, soils beneath the former UST had concentrations of Benzene, Ethylbenzene, Xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and Naphthalene above residential regulatory standards. The fuel ID sample collected from underneath the UST was reportedly leaded gasoline.

Shallow and deep soils in the former dispenser area also had elevated PID readings, staining, and strong petroleum odors. Concentrations of Benzene and Naphthalene, exceeded residential regulatory standards in the deep soil sample. Several other petroleum related VOCs, including MtBE were reported at concentrations below the residential regulatory standards at this location.

Soils in soil borings SB-4 and SB-5 exhibited elevated PID readings and petroleum odors at the groundwater interface. However, the contaminant concentrations reported from the soil samples did not exceed residential regulatory standards.

PAHs

Benzo(a)pyrene concentrations exceeded residential regulatory standards in the deep soil samples collected from the dispenser area (SB-2) and the parking lot area (SB-4).

Shallow soil samples obtained from SB-6 and SB-7, which were located north of the garage, where machinery was stored in the past, had concentrations of several individual PAHs above residential regulatory standards, and the toxicity equivalency quotient (TEQ) values exceeded DEC's Statewide Urban Background concentration.

Metals

Concentrations of metals were reported in all of the soil samples collected. None of the metals concentrations exceeded residential regulatory standards.

PCBs

No PCBs were reported above laboratory detection limits in any of soil samples collected.

Method 2 Cumulative Risk Assessment

Method 2 Cumulative Risk Assessments (CRA) were performed for all shallow soil data without indicated exceedances of current residential soil standards, which included SB-1 and SB-4S. The results of the Method 2 CRA indicate an elevated carcinogenic or non-carcinogenic risk at the SB-4S location. Method 2 CRA tabulations are included in Appendix E.

B. Groundwater Sample Results

The groundwater testing results were tabulated in comparison to the current VGES and I-Rule non-residential vapor intrusion standards. A tabular presentation of the data is included in Appendix E. Following is a discussion of the groundwater sample results obtained during this Phase II ESA.

Groundwater in the former UST location had concentrations of MtBE, Benzene, Toluene, Ethylbenzene, Xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, Naphthalene, Arsenic, and Lead in exceedance of the VGES.

Downgradient monitoring well MW-2 and MW-5 had concentrations of Benzene in exceedance of the residential vapor intrusion standard for groundwater, and concentrations of Naphthalene in exceedance of the VGES. Concentrations of Ethylbenzene were also reported above the residential vapor intrusion standard for groundwater at MW-2. The laboratory noted the VOC concentrations reported in MW-5 may be due to carryover from the duplicate sample. Due to the low well recharge additional vials could not be submitted for confirmation. However, based on the apparent groundwater flow direction and the magnitude of the petroleum release, the concentrations may present current aquifer conditions.

A map showing the dissolved-phase petroleum VOC contaminant concentrations, and a contaminant distribution map of the naphthalene plume is attached to this report. The data indicate the highest concentrations are located in the former UST area, and they decrease to the north. Benzene and naphthalene were detected in the furthest downgradient monitoring well (MW-5), which is approximately 200 feet northwest of the former UST location. The extent of the contamination was not delineated during this Phase II ESA.

C. Drinking Water Sample Results

The water supply data collected during this Phase II ESA indicate that no VOCs were reported in the water supply sample.

16.0 DATA PRESENTATION

LEE compiled current and previous analytical data for the Site in tabular format with comparisons to the current state and federal soil screening values presented in the I-Rule. These tables and the supporting laboratory data in Appendix E. Observations regarding the data and comparison to current screening values are presented in Section 12.

17.0 QA/QC SAMPLE RESULTS

LEE's quality assurance officer performed data validation on all field and laboratory data generated during the Phase II ESA, according to LEE's current generic QAPP (RFA 19093) and the approved SSQAPP Addendum dated February 25, 2020. The results are included in Appendix F and they indicate the field and laboratory data should be accepted without qualification with the exception of the VOC analysis at MW-5. The laboratory noted there may be some carryover from the duplicate sample in the MW-5 sample.

18.0 INVESTIGATION DERIVED WASTE

Investigation-derived waste associated with this investigation included small amounts of soils generated during soil borings, and small volumes of purge water from the monitoring wells. All of the soils and groundwater generated were returned to the Site. No investigation-derived waste was left on-Site pending testing or disposal.

19.0 CONCLUSIONS AND RECOMMENDATIONS

LEE performed a Phase II ESA consisting of a soil, groundwater, and drinking water evaluation. LEE has developed the following conclusions during the supplemental Phase II ESA.

• A 1,100 gallon gasoline UST was removed from the Site on June 2, 2020. The UST was a single-walled tank, and piping from other former USTs was also encountered in the excavation. The piping for the removed UST appeared to have been cut near the former pump island, and had paper stuffed in the end. It was buried approximately 1.5' to 2' below grade, and was found to be in failed condition upon removal, with extensive rust, pitting, and several large

holes in the bottom of the UST. A soil sample (UST-1) and duplicate were obtained from beneath the UST. The fuel ID sample results indicate the primary contamination signature under the tank is leaded gasoline.

- Seven soil borings were advanced at the Site on June 5, 2020. Eight soil samples and a duplicate were obtained during drilling, and five groundwater monitoring wells were installed.
- The soil data collected during this Phase II ESA indicate releases of petroleum and hazardous substances has taken place at the property. Shallow and deep petroleum contamination is located in the vicinity of the removed UST, the former dispenser, and the parking lot.
- Elevated PAHs are present in shallow soils in the area north of the garage. The vertical and horizontal extent of this contamination was not determined during this investigation.
- The Method 2 CRA analysis indicates an elevated carcinogenic or non-carcinogenic risk at the SB-4S location.
- No PCBs were reported above laboratory detection limits in the soil samples obtained.
- Concentrations of metals reported in the soil samples were below residential regulatory standards.
- The depth to water ranged from 4.45' to 11.59' across the Site. The overall groundwater flow beneath the Site appears to be northerly. The approximate hydraulic gradient is approximately 10% on the southern portion of the Site and 16% in the central and northern portions of the Site.
- The groundwater data indicate a petroleum contaminant plume is present on the Site. The highest concentrations are located in the former UST area, and they decrease to the north. Benzene and naphthalene were detected in the furthest downgradient monitoring well, which is approximately 200 feet northwest of the former UST location. The extent of the contamination was not delineated during this Phase II ESA.
- Concentrations of arsenic and lead above the VGES were reported in the groundwater in the former UST location.

LEE has developed the following recommendations during this Phase II ESA.

Additional delineation of soil and groundwater contamination should be completed. Additional groundwater sampling of the existing groundwater monitoring wells should be performed prior to delineation. A soil vapor investigation should be performed to ensure the contamination detected is not impacting the indoor air quality in the residence and garage. In addition, soil vapor should be investigated in areas slated for redevelopment. The suspect pipe near Route 128 should be investigated via a geophysical investigation in the roadway.

Once delineation is completed, an evaluation of corrective action alternatives (ECAA) and a corrective action plan (CAP) could be prepared per the requirements of Subchapter 6 of the DEC's I-Rule.

20.0 SIGNATURE AND CERTIFICATION

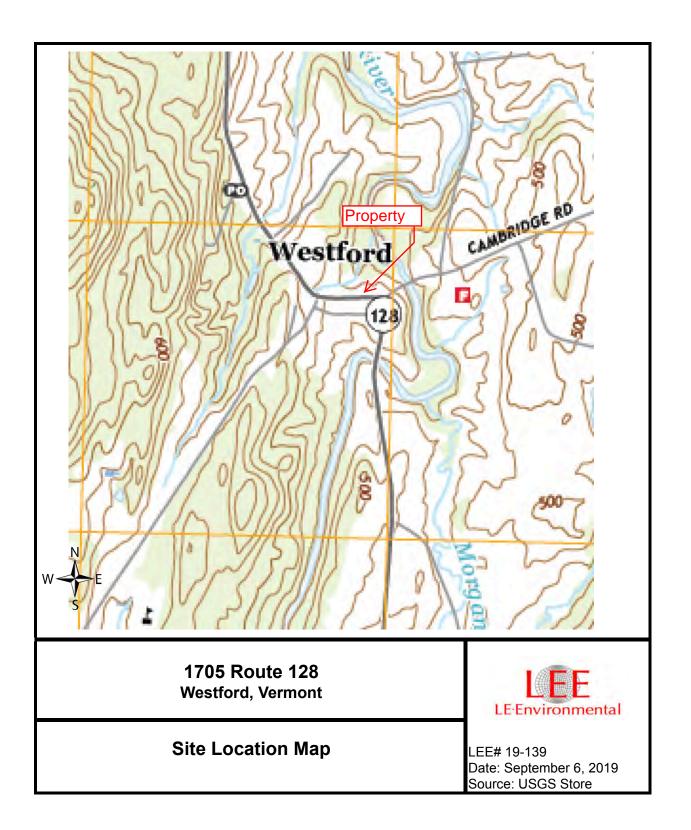
"I certify under penalty of perjury that I am an environmental professional and that all content contained within this deliverable is to the best of my knowledge true and correct."

Angela Emerson, PG, Environmental Professional

21.0 MAPS AND APPENDICES

MAPS

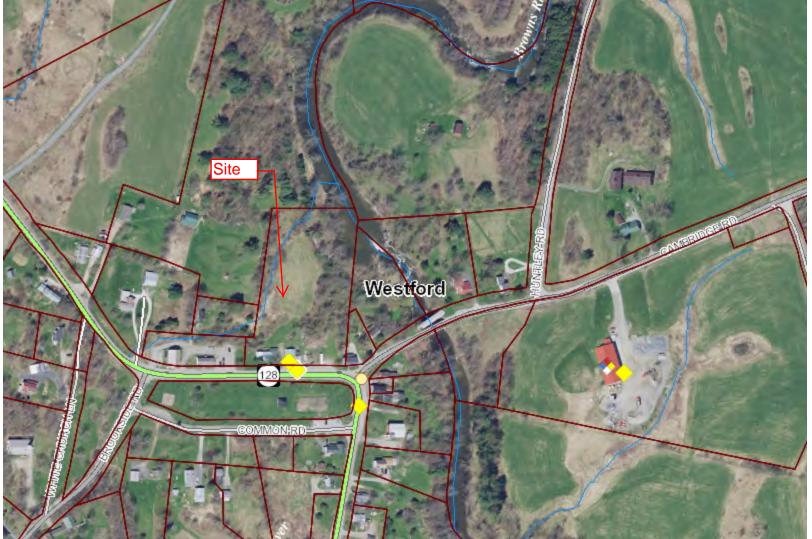
Site Location Map
Site Map
ANR Atlas Map
Soil Contaminant Map - B(a)P TEQ
Soil Contaminant Map - VOCs
Groundwater Contour Map
Groundwater Contaminant Concentration Map
Groundwater Contaminant Distribution Map - Naphthalene


APPENDICES

- A. Standard Operating Procedures
- B. Soil Boring and Monitoring Well Logs
- C. Photographic Documentation
- D. Field Notes
- E. Laboratory Analytical Results
- F. Data Validation Report
- G. Underground Storage Tank Removal Report

MAPS

Site Location Map
Site Map
ANR Atlas Map
Soil Contaminant Map - B(a)P TEQ
Soil Contaminant Map - VOCs
Groundwater Contour Map
Groundwater Contaminant Concentration Map
Groundwater Contaminant Distribution Map - Naphthalene



1705 Route 128

Vermont Agency of Natural Resources

vermont.gov

LEGEND

Hazardous Site

Hazardous Waste Generators

Brownfields

Salvage Yard

Aboveground Storage Tank

Underground Storage Tank (w

Ory Cleaner

Parcels (standardized)

Parcels (non-standardized)

Roads

Interstate

Principal Arterial

Minor Arterial

Major Collector

Minor Collector

Local

Not part of function Classification S

Stream/River

Town Boundary

NOTES

Map created using ANR's Natural Resources Atlas

208.0 0 104.00 208.0 Meters

WGS_1984_Web_Mercator_Auxiliary_Sphere 1" = 341 Ft. 1cm = 41 Meters

© Vermont Agency of Natural Resources THIS MAP IS NOT TO BE USED FOR NAVIGATION

DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map.

1: 4,091

July 20, 2020

Site Map
Pigeon Property
1705 Route 128
Westford, Vermont

Soil Boring

Monitoring Well

Supply Well
Drain Line

Former Gas UST

Drawing Date: 7/15/20 LEE Project #: 19-138

Soil Contaminant Map B[a]P TEQ Pigeon Property 1705 Route 128 Westford, Vermont Soil boring/soil sample with B[a]P TEQ concentrations reported in (mg/kg)
Exceedance of VT urban background in bold

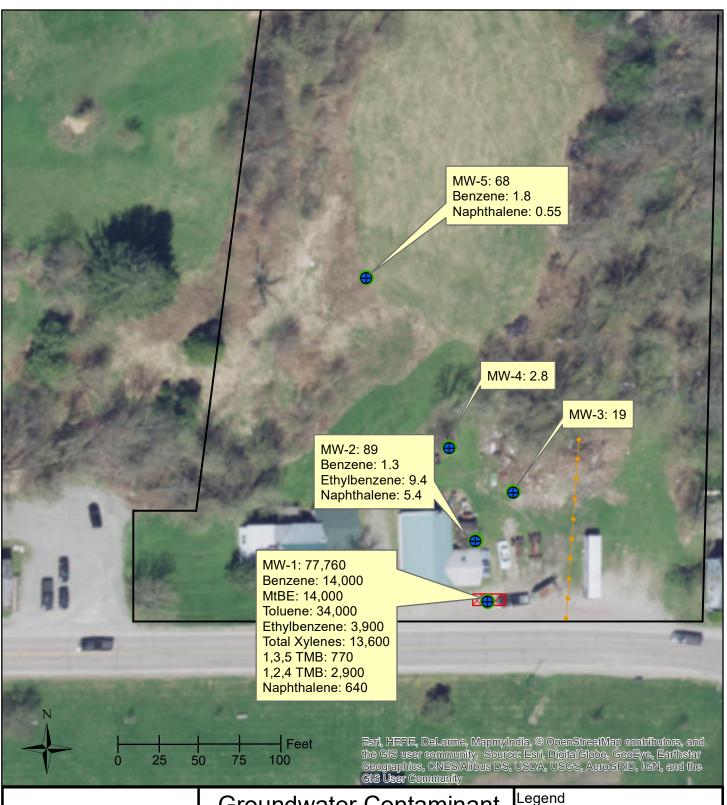
Former gasoline UST
Sample Dates: 6/2, 6/5/20
Drawing Date: 7/15/20
LEE Project #: 19-138

VOCs in Soil Contaminant Map Pigeon Property 1705 Route 128 Westford, Vermont

Legend

Soil boring/soil sample with VOC concentration exceeding residential standards noted in call-out boxes (mg/kg)
Former gasoline UST

Sample Dates: 6/2, 6/5/20 Drawing Date: 7/15/20 LEE Project #: 19-138



Groundwater Contour Map
Pigeon Property
1705 Route 128
Westford, Vermont
LEE Project # 19-138

Legend

- Soil Boring
- Monitoring well-elevations in feet
- Arrow denotes approximate groundwater flow
- Benchmark 100'

Measure Date: 6/17/20 Drawing Date: 7/15/20

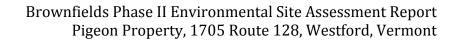
Groundwater Contaminant
Concentration Map
Pigeon Property
1705 Route 128
Westford, Vermont
LEE Project # 19-138

GW Monitoring Well with total VOCs concentrations (ug/L) Regulatory exceedances in call-out boxes

Sampled via EPA Method 8260

Sample Date: 6/17/20 Drawing Date: 7/15/20

Groundwater Contaminant
Distribution Map-Naphthalene
Pigeon Property
1705 Route 128
Westford, Vermont
LEE Project # 19-138


●GW Monitoring Well with Naphthalene concentrations in excess of VGES (ug/L) Distribution lines dashed where inferred Sampled via EPA Method 8260 Sample Date: 6/15/20

Drawing Date: 7/15/20

APPENDIX A

Standard Operating Procedures

Field Standard Operating Procedures used during this work:

- LEE SOP A: Soil Sampling
- LEE SOP B: Soil Borings, Groundwater Monitoring Well Installation and Low flow groundwater sampling
- LEE SOP E: Sample Handling
- LEE SOP F: PID Operation
- LEE SOP G: pH Conductivity and Temperature Meter Operation

APPENDIX B

Monitoring Well and Soil Boring Logs

SOIL BORING LOG/GROUNDWATER MONITORING WELL COMPLETION DIAGRAM SHEET 1 OF 1

1705 Route 128, Westford, Vermont

	vironment	al	Ju	ne 5, 2020			DRILLER	T&K Drilling
			LEE P	roject # 19-138			ON-SITE REP.	Angela Emerson
BORING N	IO. / WELL N	0.	SB-1	/ MW-5				
TOP OF C	ASING ELEV	ATION 81.18					WATER LEVEL D	ATA (IF APPLICABLE)
REFUSAL:		DEPTH Not En	countered				COMPLETION:	DEPTH 7 FT.
TOP OF R	OCK:	DEPTH Not En	countered					ELEV. 74 FT.
воттом с	OF HOLE DE	EPTH: DEPTH 12.0	FT.				MONITOR DATE:	DEPTH 10.97 FT.
	DVANCED B	Y: GEOPROBE			_			ELEV. 70.21 FT.
	RATUM		PENETRATION/	FIEL		WELL		
	EPTH I	1	RECOVERY (")	RESUL		DESIGN		RUCTION DETAILS
FT.	ELEV.	STRATUM DESCRIPTION Silty Sand (SM): dry,		Blow Counts	PID (ppm)	6M 188	SOIL SAM	PLING DETAILS
0.0	81.81	medium brown, fine to	36/36	N/A	0.2			
		coarse sand, some silt.					STEEL ROADBOX FLUS	H MOUNTED IN GRASS LOT
							BENTONITE SEAL 0.5-1.	5' BG
3.0	78.8	Lean Clay (CL): moist to	36/32	N/A	0.2		1" PVC RISER 0.5-2' BG	
		wet, medium brown, clay. Fine-medium sand layers noted at 7' and 8.5' bg.	30/32	IVA	0.2		DRILLERS SAND 1.5-12'	BG
							10' LENGTH OF 0.010 SL WELL SCREEN 2-12' BG	
6.0	75.8							
9.0	72.8	Lean Clay (CL): wet, medium brown, clay.	36/0	N/A	N/A		COLLECTED SOIL SAME	PLE SB-1 FROM 0-1.5' BG
			36/6	N/A	0.2			
12.0	69.8							

LEE LE:Environmental

SOIL BORING LOG

1705 Route 128, Westford, Vermont

June 5, 2020

DRILLER

T&K Drilling

SHEET 1 OF 1

LEE Project # 19-138

ON-SITE REP.

Angela Emerson

BORING NO. SB-2

REFUSAL: DEPTH
TOP OF ROCK: DEPTH

Not Encountered

Not Encountered

15 FT.

BOTTOM OF HOLE DEPTH: DEPTH
BORING ADVANCED BY: Geoprobe

STRATUM			FIEI	LD	
		PENETRATION/	RESU		COIL CAMPLING DETAILS
DEPTH		RECOVERY (")	Blow Counts	ı	SOIL SAMPLING DETAILS
FT.	STRATUM DESCRIPTION Well Graded Sand with Silt (SW-		Blow Courits	PID (ppm)	
	SM): dry, medium brown, fine to coarse sand, trace silt. Fill.	36/28	N/A	193.0	COLLECTED SOIL SAMPLE SB-2S FROM 0-1.5' BG
	Petroleum odor.				COLLECTED SOIL SAMPLE SB-2D FROM 13-15' BG
					NO GROUNDWATER ENCOUNTERED
3					
	Well Graded Sand with Silt (SW- SM): dry, medium brown, fine to coarse sand, trace silt. Fill. Petroleum odor.	36/36	N/A	458.1	
6					
	Lean Clay (CL): wet, medium				
	brown, clay. Petroleum odor.	36/36	N/A	167.6	
9					
	Lean Clay (CL): wet, medium				1
	brown, clay. Petroleum odor.	36/36	N/A	65.6	
12					
	Lean Clay (CL): wet, medium brown, clay. Petroleum odor. Fine sand layers at 13' and 14' BG.	36/36	N/A	1,392	
	DG.				
15					

SOIL BORING LOG/GROUNDWATER MONITORING WELL COMPLETION DIAGRAM SHEET 1 OF 1

1705 Route 128, Westford, Vermont

TOP OF ROCK: DEPTH DEPTH 15 FT.	LE-Env	vironment	al	Ju	ne 5, 2020			DRILLER	T&K Drilling
TOP OF CASING ELEVATION 99.22 REFUSAL: DEPTH Not Encountered TOP OF ROCK: DEPTH Not Encountered BOTTOM OF HOLE DEPTH: DEPTH 15 FT. BORING ADVANCED BY: GEOPROSE STRATUM DEPTH FT. ELEV. STRATUM DESCRIPTION 10.0 99.2 Well Graded Sand with Sill (SW-SN); dry, medium brown, and or locusine sand, trace sill, trace gravel, Fill. Petroleum odor. 3.0 96.2 Well Graded Sand with Sill (SW-SN); dry, medium brown, and brown, and be coarse sand, trace sill, trace gravel, Fill. Petroleum odor. 8.0 93.2 Lean Clay (CL); dry to moist, medium brown, and and dry, clay, Petroleum odor. 12.0 87.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 13.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 14.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 15.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 16.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 17.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 18.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 19.0 ST. Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor.				LEE P	roject # 19-138			ON-SITE REP.	Angela Emerson
REFUSAL: DEPTH Not Encountered Not Enc	BORING N	IO. / WELL N	0.	SB-3	/ MW-1				
TOP OF ROCK: DEPTH Not Encountered 15 FT.	TOP OF CA	ASING ELEV	ATION 99.22					WATER LEVEL D.	ATA (IF APPLICABLE)
BOTTOM OF HOLE DEPTH: DEPTH 15 FT.	REFUSAL:		DEPTH Not En	countered				COMPLETION:	DEPTH 9 FT.
STRATUM DETH	TOP OF RO	OCK:	DEPTH Not En	countered					ELEV. 90 FT.
STRATUM DEPTH	воттом с	OF HOLE DE	EPTH: DEPTH 15	FT.				MONITOR DATE:	DEPTH 4.45 FT.
STRATUM DESCRIPTION Blow Counts PID (ppm) SOIL SAMPLING DETAILS			Y: GEOPROBE						ELEV. 94.77 FT.
FT. ELEV. STRATUM DESCRIPTION 0.0 99.2 Well Graded Sand with Sitt (SW-SM); for modulum brown, fine to coarse sand, trace sitr, trace gravel, Fill. Petroleum odor. 3.0 96.2 Well Graded Sand with Sitt (SW-SM); for the to coarse sand, trace sitr, trace gravel, Fill. Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to most, medium brown, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor. 3.0 99.2 Lean Clay (CL); dry to wet, medium brown and gray, clay, Petroleum odor.									
Well Graded Sand with Silt (Siy-SM); dry, medium troown, fine to coarse sand, trace silt, trace gravel, Fill. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium troown, fine to coarse sand, trace silt, trace gravel, Fill. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium troown, fine to coarse sand, trace silt, trace gravel, Fill. Petroleum odor. Rean Clay (CL); dry to moist, medium brown, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium troown, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium brown, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium brown, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry to wet, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry to wet, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry to wet, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry to wet, medium brown and gray, clay. Petroleum odor. Well Graded Sand with Silt (SW-SM); dry to moist (SW		I	1	RECOVERY (")			DESIGN		
SW-SM; dy, medium brown, fine to coarse sand, trace slit, trace gravel, Fill. Petroleum odor. 3.0 96.2 Well Graded Sand with Slit (SW-SM); dy, medium brown, fine to coarse sand, trace slit, trace gravel. Fill. Petroleum odor. Well Graded Sand with Slit (SW-SM); dy, medium brown, fine to coarse sand, trace slit, trace gravel. Fill. Petroleum odor. BentTonitTe Seals 0.5-1.5 BG and 3.5-4.5' 1º PVC RISER 0.5-5 BG DRILLERS SAND 1.5-3.5', AND 4.5-15' BG It lean Clay (CL); dry to moist, medium brown, day. Petroleum odor. Seal of the seal of							aa sa	SOIL SAME	PLING DETAILS
8.0 93.2 Lean Clay (CL): dry to moist, medium brown, clay. Petroleum odor. 9.0 90.2 Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. 12.0 87.2 Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. 36/36 N/A 483.3 12.0 87.2 Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor.	0.0	99.2	(SW-SM): dry, medium brown, fine to coarse sand,	36/36	N/A	1,443		STEEL ROADBOX FLUS	H MOUNTED IN CEMENT
Bean Clay (CL): dry to moist, medium brown, clay. Petroleum odor. Service of the first of the f			Petroleum odor.				10000	BENTONITE SEALS 0.5-	1.5' BG AND 3.5-4.5'
Bean Clay (CL): dry to moist, medium brown, clay. Petroleum odor. Service of the	3.0	96.2		36/8	N/A	2,320	22.23	1" PVC RISER 0.5-5' BG	
Bean Clay (CL): dry to moist, medium brown, clay. Petroleum odor. Service of the			brown, fine to coarse sand, trace silt, trace gravel. Fill.					DRILLERS SAND 1.5-3.5	', AND 4.5-15' BG
Lean Clay (CL): dry to moist, medium brown, clay. Petroleum odor. Solution of the petroleum odor. Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. Solution odor. Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. Solution odor. Solution odor. Solution odor. Solution odor. Solution odor. COLLECTED SOIL SAMPLE UST-1, 6' BG IN SAMI LOCATION COLLECTED SOIL SAMPLE UST-1, 6' BG IN SAMI LOCATION Solution odor. Solution odo			Petroleum odor.					1	
9.0 90.2 Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. 12.0 87.2 Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor.	6.0	93.2							
Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. 12.0 87.2 Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor. 36/36 N/A 483.3			medium brown, clay.	36/36	N/A	409.4			PLE UST-1, 6' BG IN SAME
Lean Clay (CL): dry to wet, medium brown and gray, clay. Petroleum odor.	9.0	90.2	medium brown and gray,	36/36	N/A	483.3			
medium brown and gray, clay. Petroleum odor.	12.0	87.2							
			medium brown and gray,	36/36	N/A	913.9			
15.0 84.2	15.0	84.2							

LEE LE:Environmental

SOIL BORING LOG

SHEET 1 OF 1

1705 Route 128, Westford, Vermont

June 5, 2020

DRILLER

T&K Drilling

LEE Project # 19-138

ON-SITE REP.

Angela Emerson

BORING NO. SB-4

REFUSAL: DEPTH
TOP OF ROCK: DEPTH

Not Encountered

Not Encountered

BOTTOM OF HOLE DEPTH: DEPTH 1

15 FT.

BORING ADVANCED BY: Geoprobe

STRATUM			FIEI	_D	
DEPTH		PENETRATION/ RECOVERY (")		LTS	SOIL SAMPLING DETAILS
FT.	STRATUM DESCRIPTION	KEGOVEKI ()	Blow Counts	PID (ppm)	1
	Well Graded Sand with Silt (SW- SM): dry, medium brown, fine to coarse sand, trace silt, trace gravel. Fill. Weathered petroleum odor.	36/36	N/A	1.8	COLLECTED SOIL SAMPLE SB-4S FROM 0-1.5' BG COLLECTED SOIL SAMPLE SB-4D FROM 9-11' BG GROUNDWATER ENCOUNTERED 9' BG
3	Cilty Cond (CM); day to maint				
	Silty Sand (SM): dry to moist, dark brown, fine to coarse sand with with, trace gravel. Weathered petroleum odor.	36/36	N/A	1.7	
6					
,	Lean Clay (CL): dry to moist, medium brown, clay. Fine sand lens at 7' BG. Petroleum odor.	36/36	N/A	29.4	
9	Poorly Graded Sand (SP): wet, dark brown and gray, medium and coarse grained Sand. Weathered petroleum odor.	36/36	N/A	39.4	
	Sandy Lean Clay (CL): wet, medium brown and gray, clay with some fine to coarse sand. Weathered petroleum odor.	36/36	N/A	12.4	
15					

BORING NO. / WELL NO.

SOIL BORING LOG/GROUNDWATER MONITORING WELL COMPLETION DIAGRAM SHEET 1 OF 1

1705 Route 128, Westford, Vermont

June 5, 2020

DRILLER ON-SITE REP. T&K Drilling

LEE Project # 19-138 SB-5 / MW-2

Angela Emerson

TOP OF CASING ELEVATION 99.74 WATER LEVEL DATA (IF APPLICABLE) REFUSAL: DEPTH _ DEPTH Not Encountered COMPLETION: TOP OF ROCK: DEPTH ELEV. Not Encountered 91 FT. BOTTOM OF HOLE DEPTH: MONITOR DATE: DEPTH DEPTH FT. 6.26 FT. BORING ADVANCED BY: GEOPROBE ELEV. 93.48 FT.

STR	RATUM		PENETRATION/	FIELI)	WELL	
DE	PTH	<u> </u>	RECOVERY (")	RESUL	TS	DESIGN	WELL CONSTRUCTION DETAILS
FT.	ELEV.	STRATUM DESCRIPTION		Blow Counts	PID (ppm)		SOIL SAMPLING DETAILS
0.0	99.7	Well-graded Sand (SW): dry, medium brown, fine to coarse sand, trace gravel. Fill.	36/36	N/A	0.4		STEEL ROADBOX FLUSH MOUNTED IN CEMENT BENTONITE SEALS 0.5-1.5' BG AND 3.5-4.5'
6.0	96.7	Silty Sand (SM): dry, medium brown, fine to coarse sand, trace gravel.	36/9	N/A	0.2		1" PVC RISER 0.5-5' BG DRILLERS SAND 1.5-3.5', AND 4.5-15' BG 10' LENGTH OF 0.010 SLOT PVC PLASTIC WELL SCREEN 5-15' BG
9.0	90.7	Sandy Lean Clay (CL): wet, medium brown and gray, clay with some fine to coarse sand. Not enough recovery to collect laboratory sample. Slight petroleum odor.	36/2	N/A	14.1		COLLECTED SOIL SAMPLE SB-5 FROM 9-10' BG HIGHEST PID READING OBTAINED FROM 6-9' BG RUN, BUT LOW RECOVERY PROHIBITIED SAMPLE COLLECTION FROM THIS RUN
12.0	87.7	Lean Clay (CL): wet, medium brown and gray, clay. Slight petroleum odor.	36/36	N/A	2.7		
15.0	84.7	Lean Clay (CL): moist to wet, medium brown, clay. Fine-medium sand layers noted at 13' and 13.5' bg.	36/36	N/A	2.1		

SOIL BORING LOG/GROUNDWATER MONITORING WELL COMPLETION DIAGRAM SHEET 1 OF 1

1705 Route 128, Westford, Vermont

REFUSAL: TOP OF ROCK: BOTTOM OF HOLE DEPTH: BORING ADVANCED BY: STRATUM DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sal medium coarse s Gravel f 3.0 96.0 Sandy L		SB-6 /	FIELD RESULT Blow Counts N/A		WELL	WATER LEVEL DATA (IF APPLICABLE) COMPLETION: DEPTH 12 FT. ELEV. 87 FT. MONITOR DATE: DEPTH 11.59 FT. ELEV. 87.44 FT.
TOP OF CASING ELEVATION REFUSAL: TOP OF ROCK: BOTTOM OF HOLE DEPTH: BORING ADVANCED BY: STRATUM DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sai medium coarse : Gravel f	DEPTH	tered NETRATION/ COVERY (")	FIELD RESULT Blow Counts	rs		COMPLETION: DEPTH 12 FT. ELEV. 87 FT. MONITOR DATE: DEPTH 11.59 FT. ELEV. 87.44 FT.
REFUSAL: TOP OF ROCK: BOTTOM OF HOLE DEPTH: BORING ADVANCED BY: STRATUM DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sal medium coarse s Gravel f 3.0 96.0 Sandy L	DEPTH	NETRATION/	RESULT Blow Counts	rs		COMPLETION: DEPTH 12 FT. ELEV. 87 FT. MONITOR DATE: DEPTH 11.59 FT. ELEV. 87.44 FT.
TOP OF ROCK: BOTTOM OF HOLE DEPTH: BORING ADVANCED BY: STRATUM DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sal medium coarse s Gravel f 3.0 96.0 Sandy L	DEPTH Not Encount DEPTH 15 FT. GEOPROBE PEN REI TUM DESCRIPTION Ind (SM): dry, brown, fine to sand, some silt.	NETRATION/	RESULT Blow Counts	rs		ELEV. 87 FT.
BOTTOM OF HOLE DEPTH: BORING ADVANCED BY: STRATUM DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sai medium coarse sing Gravel f 3.0 96.0 Sandy L	DEPTH 15 FT. GEOPROBE PEN REI TUM DESCRIPTION Ind (SM): dry, brown, fine to sand, some silt.	NETRATION/ COVERY (")	RESULT Blow Counts	rs		MONITOR DATE: DEPTH 11.59 FT. ELEV. 87.44 FT.
STRATUM DEPTH STRAT	GEOPROBE PEN REI TUM DESCRIPTION Ind (SM): dry, brown, fine to sand, some silt.	COVERY (")	RESULT Blow Counts	rs		ELEV. 87.44 FT.
STRATUM DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sal medium coarse s Gravel f 3.0 96.0 Sandy L	TUM DESCRIPTION nd (SM): dry, brown, fine to sand, some silt.	COVERY (")	RESULT Blow Counts	rs		
DEPTH FT. ELEV. STRAT 0.0 99.0 Silty Sal medium coarse s Gravel f 3.0 96.0 Sandy L	TUM DESCRIPTION Ind (SM): dry, brown, fine to sand, some silt.	COVERY (")	RESULT Blow Counts	rs		
FT. ELEV. STRAT 0.0 99.0 Silty Sal medium coarse s Gravel f 3.0 96.0 Sandy L	rum description Ind (SM): dry, brown, fine to sand, some silt.		Blow Counts		DEGLON	
0.0 99.0 Silty Sal medium coarse s Gravel f	nd (SM): dry, brown, fine to sand, some silt.	36/36		DID (mmm)	DESIGN	WELL CONSTRUCTION DETAILS
medium coarse s Gravel f	brown, fine to sand, some silt.	36/36	N/A	PID (ppm) [SOIL SAMPLING DETAILS
coarse s Gravel f	sand, some silt.			1.3	\mathbb{Z}	
3.0 96.0 Sandy L				f		STEEL ROADBOX FLUSH MOUNTED IN CEMENT
Sandy L				İ		
Sandy L						BENTONITE SEALS 0.5-1.5' BG AND 3.5-4.5'
to wet in	ean Clay (CL): dry	36/36	N/A	0.6		1" PVC RISER 0.5-5' BG
gray, cla	nedium brown and by with some fine light petroleum odor.	00,00	1471	0.0		DRILLERS SAND 1.5-3.5', AND 4.5-15' BG
				1		10' LENGTH OF 0.010 SLOT PVC PLASTIC
				1		WELL SCREEN 5-15' BG
6.0 93.0				t		
medium	ay (CL): dry to moist brown and gray, ght petroleum odor.	36/36	N/A	0.2		COLLECTED SOIL SAMPLE SB-6 FROM 0-1.5' BG
9.0 90.0						
medium	ay (CL): dry to moist brown and gray, ght petroleum odor.	36/36	N/A	0.2		
12.0 87.0				ŀ		
Lean Cl medium	ay (CL): wet, brown, clay. Several d layers noted.	36/36	N/A	0.2		
15.0 84.0						

SOIL BORING LOG/GROUNDWATER MONITORING 1705 Route 128, Westford, Vermont SOIL BORING LOG/GROUNDWATER MONITORING WELL COMPLETION DIAGRAM SHEET 1 OF 1

W		1705 Route 12	28, westtora, ve	ermont				
vironment	al	Ju	ne 5, 2020			DRILLER	T&K Drilling	
		LEE P	roject # 19-138			ON-SITE REP.	Angela Emerson	
O. / WELL N	0.	SB-7	' / MW-4					
ASING ELEV	ATION 98.68					WATER LEVEL D	ATA (IF APPLICABLE)	
	DEPTH Not En	countered				COMPLETION:	DEPTH 12 FT.	
OCK:	DEPTH Not En	countered					ELEV. 87 FT.	
OF HOLE DE	EPTH: DEPTH 15	FT.				MONITOR DATE:	DEPTH 11.07 FT.	
DVANCED B	Y: GEOPROBE						ELEV. 87.61 FT	
ATUM					WELL			
PTH	_	RECOVERY (")		RESULTS DESIGN		WELL CONST	RUCTION DETAILS	
ELEV.	STRATUM DESCRIPTION		Blow Counts	PID (ppm)	zar isa	SOIL SAMI	PLING DETAILS	
98.7	medium brown, fine to coarse sand, some silt. Gravel fill top 18."	36/26	N/A	0.3		STEEL ROADBOX FLUS	H MOUNTED IN CEMENT	
95.7						BENTONITE SEALS 0.5- 1" PVC RISER 0.5-5' BG	1.5' BG AND 3.5-4.5'	
	Lean Clay (CL): dry, medium brown and gray, clay.	36/36	N/A	0.2	223	DRILLERS SAND 1.5-3.5	', AND 4.5-15' BG	
						10' LENGTH OF 0.010 SL WELL SCREEN 5-15' BG		
92.7	Lana Olavi (OL) vidavi asa divisa							
89.7	brown and gray, clay. Fine sand layer at 8' BG and 1 cm thick varves from 8-9' BG	36/36	N/A	0.3		COLLECTED SOIL SAME	PLE SB-7 FROM 0-1.5' BG	
86.7	Lean Clay (CL): dry, medium brown and gray, clay. 1 cm thick varves from throughout	36/36	N/A	0.1				
55.7	Lean Clay (CL): moist to wet, medium brown, clay. Several fine sand layers noted.	36/36	N/A	0.1				
83.7								
	O. / WELL N ASING ELEV OCK: OF HOLE DE DVANCED B EATUM PTH ELEV. 98.7 95.7 92.7 89.7	DEPTH Not End DICK: DEPTH 15 DICK: D	LEE P O. / WELL NO. ASING ELEVATION 98.68 DEPTH Not Encountered DEPTH 15 FT. DVANCED BY: GEOPROBE ATUM PPTH ELEV. STRATUM DESCRIPTION 98.7 Silty Sand (SM): dry, medium brown, fine to coarse sand, some silt. Gravel fill top 18." 95.7 Lean Clay (CL): dry, medium brown and gray, clay. Fine sand layer at 8' BG and 1 cm thick varves from 8-9' BG 89.7 Lean Clay (CL): dry, medium brown and gray, clay. 1 cm thick varves from throughout 86.7 Lean Clay (CL): moist to wet, medium brown, clay. Several fine sand layers noted. 96.7 Lean Clay (CL): moist to wet, medium brown, clay. Several fine sand layers noted.	Dune 5, 2020 LEE Project # 19-138 O. / WELL NO. ASING ELEVATION 98.68 DEPTH Not Encountered DCK: DEPTH 15 FT. DVANCED BY: GEOPROBE ATUM PRITE ELEV. STRATUM DESCRIPTION 98.7 Silty Sand (SM): dry, medium brown, fine to coarse sand, some silt. Gravel fill top 18." 98.7 Lean Clay (CL): dry, medium brown and gray, clay. 92.7 Lean Clay (CL): dry, medium brown and gray, clay. Fine sand layer at 8' BG and 1 cm thick varves from 8-9' BG 89.7 Lean Clay (CL): dry, medium brown and gray, clay. 1 cm thick varves from throughout 86.7 Lean Clay (CL): moist to wet, medium brown and gray, clay. 1 cm thick varves from throughout 86.7 Lean Clay (CL): moist to wet, medium brown, clay. Several fine sand layers noted. 87.4 Several fine sand layers noted.	Columbia Columbia	DUANCED BY: SITURN DESCRIPTION 98.7 Lean Clay (CL): dry, medium brown and gray, clay. Lean Clay (CL): dry, medium brown and gray, clay. Dean Clay (CL): dry, medium brown and gray, clay. Elean Clay (CL): dry, medium and gray. Elean Clay (CL): dry, medium brown and gray, clay. Elean Clay (CL): dry, medium brown and gray, clay. Elean Clay (CL): dry, medium brown and gray, clay. Elean Clay (CL): dry, medium brown and gray, clay. Elean Clay (CL): dry, medium brown and gray, clay. Elean Clay (CL): dry, medium brown and gray. Elean Clay (CL): dry, medium a	LEE Project # 19-138 DEPITH Not Encountered DOCK: DEPITH 15 FT. DEPOTH RECOVERY (") RESULTS DEPOTH RECOVERY (") RESULTS DESIGN WELL CONSTITUTION PID (ppm) PTH STRATUM DESCRIPTION RECOVERY (") RESULTS DESIGN WELL CONSTITUTION PID (ppm) PST STRATUM DESCRIPTION SOIL SAME SOIL SAME STRATUM DESCRIPTION RECOVERY (") RESULTS DESIGN WELL CONSTITUTION SOIL SAME SOIL SAME STEEL ROADBOX FLUS S	

APPENDIX C

Photographic Documentation

Photograph ID: 001

Date: June 2, 2020

Location:

Former UST area

Direction: Looking south

Comments:

Top of gasoline UST. Unknown pipe noted south of the UST circled.

Photograph ID: 002

Date: June 2, 2020

Location: Parking lot

Direction: Looking east

Comments:

Various piping removed from the UST excavation

Photograph ID: 003

Date: June 2, 2020

Location:

Southern portion of Site

Direction: Looking east Comments:

Removing gasoline UST

Photograph ID: 004

Date: June 2, 2020

Location:

Southern portion of Site

Direction: Looking north

Comments:

Removed gasoline UST. Large holes noted throughout the bottom of the UST

Photograph ID: 005

Date: June 5, 2020

Location: Center of site

Direction: Looking north Comments:

Drilling SB-7/MW-4

Photograph ID: 006

Date: June 5, 2020

Location: Center of site

Direction:

Looking northwest

Comments:

Drilling SB-7/MW-4

Photograph ID: 007

Date: June 5, 2020

Location: Center of site

Direction:

Looking southeast

Comments:

Drilling SB-6/MW-3

Photograph ID: 008 Date: June 5, 2020

Location:

North of garage

Direction:

Looking west

Comments:

Drilling SB-5/MW-2

Photograph ID: 009

Date: June 5, 2020

Location:

Parking lot on eastern portion of

Site

Direction:

Looking east Comments:

Drilling SB-4

Photograph ID: 010

Date: June 5, 2020

Location:

Former UST area

Direction:

Looking west

Comments:

Drilling SB-3/MW-1

Photograph ID: 011

Date: June 5, 2020

Location:

Former dispenser area

Direction: Looking west

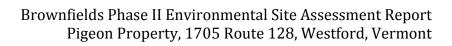
Comments:

Drilling SB-2

Photograph ID: 012 Date: June 5, 2020

Location:

Northern portion of Site


Direction:

Looking south

Comments:

Drilling SB-1/MW-5

Field Notes

APPENDIX D

1705 ROUTE 128 WESTFORD, VT SOIL SAMPLING FIELD FORM JOB # 19-138

DATE: 6/2/20	INSPECTORS(S): AE LAPL

Equipment Needed: PID, Mag, Handauger, EAI containers, markers, chain of custody, decon equipment (coolers, gloves, alconox, distilled water, etc.), peristaltic pump, tubing

TASK 1: Remove gasoline UST in accordance with DEC guidance. One soil sample and one duplicate sample will be collected beneath the presumed gasoline UST and it will be submitted for laboratory analysis of the following constituents:

- VOCs via EPA Method 8260c;
- · PAHs via EPA Method 8270d; and,
- RCRA 8 Metals via EPA Method 6020.

If it is determined there has been a release of petroleum from this tank, and if the contents (or former contents) cannot be clearly identified, a fingerprint analysis of the fuel type will be performed. In this instance, one soil sample will be collected from the area with the highest recorded contamination, which will be determined via PID readings obtained in the field, and the sample will be submitted for laboratory analysis of:

TPH 8100 Hydrocarbon Fingerprint ID

UST SOIL SAMPLES

Sample #	Time	Location/Depth	PID
UST- (1545	ВоТ	1644
Dupli cate	1545	Вот	1644

1705 ROUTE 128 WESTFORD, VT SOIL SAMPLING FIELD FORM JOB # 19-138

3 - T - T		
DATE: 6/5/20	INSPECTORS(S): AE	

Task 2: Drilling - A geoprobe drill rig will be utilized to advance seven soil borings at the exterior locations as shown on the Proposed Phase II ESA Site Map.

Continuous soil sampling will be conducted during soil boring advancement. Soil samples will be screened for VOCs using a calibrated PID. The samples will be collected from the soil horizon exhibiting the greatest degree of contamination in the field as evidenced by PID reading, staining, or odor. If there is no indication of contamination, then the soil sample will be collected from 0-1.5' bg to gauge surface soil conditions.

If sufficient groundwater is encountered during soil boring advancement (more than 12"), groundwater monitoring wells will be installed and groundwater testing will be conducted. A 1" diameter PVC groundwater monitoring well will be installed in the soil boring. Each well will have up to a 10' well screen spanning the water table. Each well will be developed following its installation with a peristaltic pump.

Soil samples will be submitted for laboratory analysis of the following contaminants of concern, and a duplicate will be collected (total of eight samples):

- VOCs via EPA Method 8260c
- PAHs via EPA Method 8270d
- RCRA 8 Metals via EPA Method 6020

One grab soil sample will also be collected from soil borings SB-2 through SB-7 for the following constituent:

Polychlorinated biphenyl compounds (PCBs) via EPA Method 8082

1705 ROUTE 128 WESTFORD, VT SOIL SAMPLING FIELD FORM JOB # 19-138

SOIL SAMPLES

Sample #	Time	Location/Depth	PID	VOA
SB-C	0900	0-15	1.3	50629
5B-7	0925	0-25	0.3	50626
S8-5	1010	9-10 Das	0.4 2.7	50625
Dupli cate	N.	k	4	50622
SB-45	1100 · · ·	0-15	1.8	5%21
58-4D	1110	9-11	39.4	Sory
SB-25	1215	0-1.5	193.0	50619
5B.2D	1235	13-151	1392	50623
SR-1	1340	. 15	80	No Pep Herc

SB-1

1300

0-1.5

0.2

Page 3 of 3

Per approved work plan

Collect one groundwater sample from MW-1, 2, 3, 4, and 5:

VOCs (M8260c) (2-40 ml glass vials pre-preserved with HCl)

RCRA 8 Metals

Collect one duplicate sample

Submit EAI prepared gw trip blank for M8260c analysis

Collect a DWS as well

Equipment

LE Equipment

pH/Conductivity Meter

Truck

Hand Tools

5-gallon pails

WLI

Peristaltic pump and tubing

Deep cycle battery

Geotech Equipment

Turbidity Meter

Supplies

LE Supplies

Bailers

Rope

plastic containers (for field measurements)

paper towels

baggies

gloves

pens

water

soap

EAI Supplies

Cooler, 5 sets Bottles, COC form

Monitoring Well MW-1

a Form		ALL			
Technician:		(1,2/2	80b		
		6/17/2	010		
Location:	•	11.14			
Depth to Water:		4.451	<u> </u>		r
	Time	рН	Cond	Temp	Turb
	0957	6.31	7.19	14.4	189
	1002	6.36	7.71	15.7	792
	1005	6.27	7.46	16.0	138
	, , , , , , , , , , , , , , , , , , ,			*	

* Dewntered 1005 *Sampled 1030 *Spylicate here

Monitoring Well MW-2

	Λ / Λ				
n:	13/14	<u>\</u>			_
9:	6/17/2	LO .			_
:	(2	6'			
					7
Time	pН		Temp		-{
0850	6.39	555	12.4	919	_
0855	6.64	568	11.7	842	
0859	6.41	520	12.3	173	
				X-	+ Dewatered at 0902 + Sampled 1010
					+Sampus
					_
					_
					_
					_
					_
	Time 0850 0855	Time pH 0850 6.39 0855 6.64	(17/20 (1.26) Time pH cond 0850 6.39 555 0855 6.64 568	G 17 120 (1,26' Time pH cond Temp 0850 6.39 555 12.4 0855 6.64 568 11.7	G 17/20 (1.26' Time pH cond Temp Turb 0850 6.39 555 12.4 419 0855 6.64 568 11.7 842

LE Environmental LLC
Pigeon Property
Groundwater monitorin

Monitoring Well MW-3

Groundwater monitoring
Field Data Form

Form		1-14			
Technician		#18/1	<u>L</u>		
Date:		6/13/2	.0		
Depth to Water:		11.59		Ţ	
	Time	рН	Cond	Temp	Turb
	0924	6.69	10 3.9	13.1	113
		- -			

Dewatered
0927

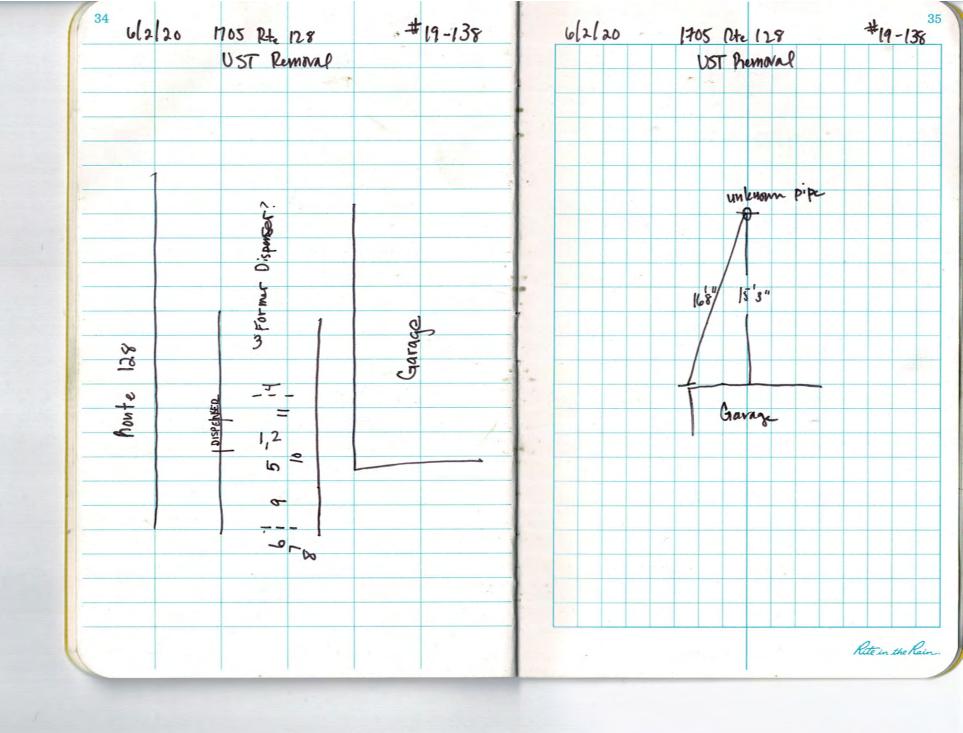
15 Sampled 1150

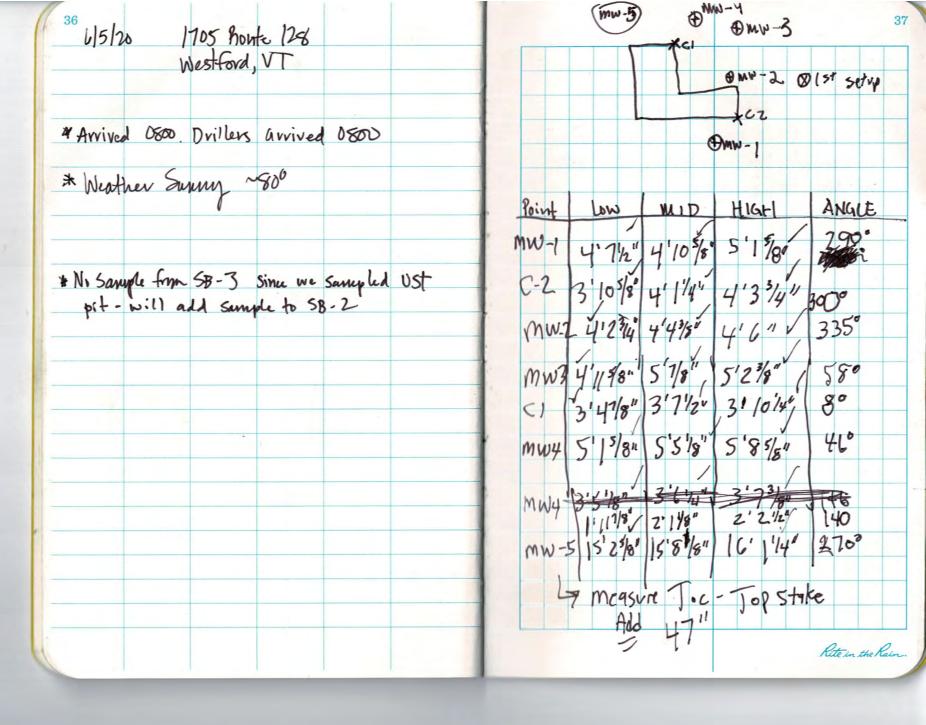
Not enough H20

For metals

Monitoring Well MW-4

vater monitor	ing				
a Form		1-14	1		
Technician		TE /	<u> </u>		
Date	. (AE/A 1/3/20			
Depth to Water:	1	1.07			
	Time	рН	Cond	Temp	Turb
	d135	6.85	1017	13.8	46.8
	०१५०	4.78	1006	15. D	46.8 910
					·
I					


De watered 0940 LE Environmental LLC
Pigeon Property
Groundwater monitoring


Monitoring Well MW-5

Groundwater monitor	ing					
Field Data Form		1 1				
Technician	:	HE/	AL_			
		117/20	,,			_
Date						-
Depth to Water:	ĺ	0.97				
Depth to water:		* · · · · · · · · · · · · · · · · · · ·	1			7
	Time	рН	Cond	Temp	Turb	
						1
	1045	7.01	228	14.6	>	* Dewatered immediately * No metals
						1 1 1
			1			mmedi aren
						* N. W. + C.
						-to victing!
						_
	ļ					
]
					· · · · · · · · · · · · · · · · · · ·	
						1
				,		٠

US	T Removal	At.	
	100		les
· Madhar Cl	L. N500		2
· Weather Cl	onay " Jo		
· Arrived on-Sit	8:30		
THE STATE OF THE S	0.50		
NRC on-Site o	1:00		
Uncovered UST	- strong petr	oleum odor n	oteel
just below gro	de		
	-		1
1,000 gallon ga appears to be to	soline UST	-piping on t	p .
	your vent pip	and olispen	ser
pipes).		
"UST 12" × 4"	- ĽJ	21 001	70
051 12 × 1	CXCAVATIM	. 00 4 4.5	
· Groundwater	at hillow of	number 1	66
, sulfation of	politing of	provación	7

Sample #	Location (Dept	h Type	PID
1	TOT /6"	Gray+ Brn F.C	
		Sand, some gravel	
2	TOT/18"	12	61.0
3 (ONDER DISP. ISU	4ND/18" "	17.1
4	SOT / 3011	D.Bm.FS +Sill	926.2
		some gravel	
5	TOT /18"	F-C SAWA, SO THE GOARD	2374
6	ED] /1811	FSKNA+Silt	212.4
7	SOT/BO"	M-C Send and gramp	755.8
8	SOT 60"	wet, dark gray, silf & F.Sand	1440
6 9	Вот ь	Wet, grazelay	1644
10	BOT 4	ч	1624
11	BOT 6'	11	1286

Appendix E

Laboratory Analytical Results

Liquid Level Monitoring Data Brownfields Phase II ESA Pigeon Property 1705 Route 128 Westford, Vermont

Measurement Date: June 17, 2020

					,			
	Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW-1	99.22	-	4.45	-	-	-	-	94.77
MW-2	99.74	-	6.26	-	-	-	-	93.48
MW-3	99.03	-	11.59	-	-	-	-	87.44
MW-4	98.68	-	11.07	-	-	-	-	87.61
MW-5	81.18	ı	10.97	ı	ı	ı	ı	70.21

Notes:

All Values Reported in Feet

btoc - Below Top of Casing

Elevation data relative to 100' at SE corner of garage

Brownfields Phase II Environmental Site Assessment Pigeon Property

	- COMPA
	AS 100 A
	F10 000
	7558 MB000
	-
L C.C.	o circo o oo conto
	nvironmenta

							ta Summary e 1 of 11								
Completely are control	Hem 4	D. Herr 4	CD 1	CD 2C	CD 2D			CD F	CD 6	CD 7	D CD 5	1			
Sample Identification	UST-1	Dup UST-1	SB-1	SB-2S 0-1.5	SB-2D	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5	ED4 D	EDAT. J. a. d. J.	tree partitions	VSS Non-
Sample Depth (ft. bg)	6		0-1.5	193.0	13-15 1,392	0-1.5	9-11 39.4	9-10 2.7	0-1.5	0-1.5 0.3	9-10	EPA Residential	EPA Industrial		Residential
PID Reading (ppm) Sample Date	1,644 6/2/20	1,644 6/2/20	0.2 6/5/20	6/5/20	6/5/20	1.8 6/5/20	6/5/20	6/5/20	1.3 6/5/20	6/5/20	2.7 6/5/20	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)	(mg/kg)
	6/2/20	6/2/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20				
VOCs, EPA Method 8260C (mg/kg)	VD 04	ND 04	ND 04	VD 04	ND 04	VD 04	o.4	ND 04	VD 04	ND 04	ND 04	0.5	0.70		
Dichlorodifluoromethane	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1				-
Chloromethane	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	110	460		-
Vinyl Chloride	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.03		-	0.10	0.59
Bromomethane	ND<0.2	ND<0.2	ND<0.1	ND<0.2	ND<0.1	ND<0.2	ND<0.2	ND<0.1	ND<0.2	ND<0.2	ND<0.1	6.8	30		-
Chloroethane (ethyl chloride)	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	14,000	57,000		-
Trichlorofluoromethane	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	23,000	350,000	-	-
Diethyl Ether	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.7	-	-	-	
Acetone	ND<3	ND<2	ND<2	ND<2	ND<3	ND<2	ND<2	ND<2	ND<2	ND<2	ND<3		-	40,609	100,028
1,1-Dichloroethene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		1,000		-
Methylene chloride	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	57	1,000		-
Carbon disulfide	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	608	662
MTBE	ND<0.1	ND<0.1	ND<0.1	ND<0.1	1.8 ND<0.06	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1		-	649	4,464
trans-1,2-Dichloroethene	ND<0.06	ND<0.06	ND<0.06	ND<0.05		ND<0.05	ND<0.05 ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	1,402	18,137
1,1-Dichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	112 0100	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	2.1	13
2,2-Dichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	- 440	- 1011
cis-1,2-Dichloroethene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	140	1,814
2-Butanone (MEK)	ND<0.6	ND<0.6	ND<0.6	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.7		-	16,952	26,991
Bromochloromethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	193	597
Tetrahydrofuran(THF)	ND<0.6	ND<0.6	ND<0.6	ND<0.5	ND<0.6	ND<0.5	ND<0.5 ND<0.05	ND<0.6 ND<0.06	ND<0.5	ND<0.5	ND<0.7		-	-	-
Chloroform	ND<0.06	1.2 0.00	ND<0.06	1.2 0.00	ND<0.06	ND<0.05	ND<0.05	1.2 0.00	ND<0.05	112 0100	ND<0.07		1.4		-
1,1,1-Trichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	112 0100	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-,	36,000		-
Carbon tetrachloride	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	0.37	2.2
1,1-Dichloropropene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	- 0.70	-
Benzene	43		ND<0.06	ND<0.05	8.7 ND<0.06	ND<0.05	0.079	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	0.70	4.2
1,2-Dichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05		ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	0.29	1.7
Trichloroethene (TCE)	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-	0.68	6.5
1,2-Dichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06 ND<0.06	ND<0.05 ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		- 99	1.5	9.1
Dibromomethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05			ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		1.3		
Bromodichloromethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07				-
4-Methyl-2-pentanone(MIBK)	ND<0.6 ND<0.06	ND<0.6	ND<0.6	ND<0.5	ND<0.6	ND<0.5 ND<0.05	ND<0.5 ND<0.05	ND<0.6	ND<0.5 ND<0.05	ND<0.5	ND<0.7 ND<0.07		140,000 8.2		-
cis-1,3-Dichloropropene		ND<0.06	ND<0.06	ND<0.05	ND<0.06					ND<0.05			8.2	706	-
Toluene	610	520	ND<0.06	ND<0.05	63	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		-		798
trans-1,3-Dichloropropene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.6	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		8.2		-
1,1,2-Trichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		1 200		-
2-Hexanone	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	200	1,300		-
Tetrachloroethene (PCE)	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		22.000	2.4	14
1,3-Dichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		23,000		-
Dibromochloromethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07		39		-
1,2-Dibromoethane(EDB)	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.03	-	-	0.02	0.14
Chlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	414	726

NOTES:

Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule

EPA Regional Screening Levels (RSLs) from May 2020 RSL Summary Table. RSLs not included when a VSS exists.

Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.

Blank Cell=no published value (VSS) or published value not applicable (RSL)

Brownfields Phase II Environmental Site Assessment Pigeon Property

Westford, Vermont Soil Data Summary Page 2 of 11

Sample Identification	UST-1	Dup UST-1	SB-1	SB-2S	SB-2D	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5				VSS Non-
Sample Depth (ft. bg)	6	6	0-1.5	0-1.5	13-15	0-1.5	9-11	9-10	0-1.5	0-1.5	9-10	EPA Residential	EPA Industrial	VSS Residential	Residential
PID Reading (ppm)	1,644	1,644	0.2	193.0	1,392	1.8	39.4	2.7	1.3	0.3	2.7	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)	
Sample Date	6/2/20	6/2/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20				(mg/kg)
VOCs, EPA Method 8260C (mg/kg) (co	ntinued)														
1,1,1,2-Tetrachloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 2	8.8	-	-
Ethylbenzene	150	120	ND<0.06	ND<0.05	22	ND<0.05	0.20	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 -	-	3.7	22
mp-Xylene	700	620	ND<0.06	ND<0.05	82	ND<0.05	0.22	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	252	257
o-Xylene	280	250	ND<0.06	ND<0.05	32	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	232	237
Styrene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	6,000	35,000	-	-
Bromoform	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 19	86	-	-
IsoPropylbenzene (cumene)	14	16	ND<0.06	ND<0.05	2.4	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	p	264
Bromobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 290	1,800	-	-
1,1,2,2-Tetrachloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	0.6	2.7	-	-
1,2,3-Trichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 -	-	0.00311	0.07
n-Propylbenzene	46	37	ND<0.06	ND<0.05	7.3	ND<0.05	0.11	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	253	261
2-Chlorotoluene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1,600	23,000	-	-
4-Chlorotoluene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1,600	23,000	-	-
1,3,5-trimethylbenzene	86	70	ND<0.06	ND<0.05	14	ND<0.05	0.39	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	144*	177*
tert-Butylbenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	7,009	102,200
1,2,4-trimethylbenzene	340	330	ND<0.06	ND<0.05	53	ND<0.05	1.0	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	144*	177*
sec-Butylbenzene	4.7	4.8	ND<0.06	ND<0.05	0.77	ND<0.05	ND<0.05	0.13	ND<0.05	ND<0.05	ND<0.07	-	-	7,009	102,200
1,3-Dichlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	-	-
p-Isopropyltoluene (p-cymene)	2.6	2.7	ND<0.06	ND<0.05	0.52	ND<0.05	ND<0.05	0.098	ND<0.05	ND<0.05	ND<0.07	-	-	-	-
1,4-Dichlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	2.6	11	-	-
1,2-Dichlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1,800	9,300	-	-
n-Butylbenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	3,504	51,100
1,2-Dibromo-3-chloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	0.0053	0.064	-	-
1,2,4-Trichlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 24	110	-	-
Hexachlorobutadiene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 1.2	5.3	-	
Naphthalene	54	43	ND<0.1	ND<0.1	7.6	ND<0.1	0.19	ND<0.1	ND<0.1	ND<0.1	ND<0.01	-	-	2.7	16
1,2,3-Trichlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	7 63	930	-	-

NOTES:

NOTES:

Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule
EPA Regional Screening Levels (RSLs) from May 2020 RSL Summary Table. RSLs not included when a VSS exists.
Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.
Dashed Cell=no published value (VSS) or published value not applicable (RSL)

* Standard for 1,3,5 and 1,2,4 TMB

Brownfields Phase II Environmental Site Assessment Pigeon Property Westford, Vermont Soil Data Summary

Page 3 of 11

							,00011								
Sample Identification	UST-1	Dup UST-1	SB-1	SB-2S	SB-2D	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5				VSS Non-
Sample Depth (ft. bg)	6	6	0-1.5	0-1.5	13-15	0-1.5	9-11	9-10	0-1.5	0-1.5	9-10	EPA Residential	EPA Industrial	VSS Residential	Residential
PID Reading (ppm)	1,644	1,644	0.2	193.0	1,392	1.8	39.4	2.7	1.3	0.3	2.7	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)	(mg/kg)
Sample Date	6/2/20	6/2/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20				(mg/kg)
PAH EPA Method 8270D (mg/kg)															
Naphthalene	3.5	3.4	ND<0.009	0.012	0.018	ND<0.008	0.012	ND<0.009	0.045	0.024	ND<0.009	-	-	2.7	16
2-Methylnaphthalene	2.6	2.5	ND<0.009	0.0082	0.013	ND<0.008	0.0094	ND<0.009	0.019	0.0092	ND<0.009	240	3,000	-	-
1-Methylnaphthalene	1.2	1.2	ND<0.009	ND<0.007	ND<0.01	ND<0.008	0.0094	ND<0.009	0.017	ND<0.008	ND<0.009	18	73	-	-
Acenaphthylene	0.042	0.036	ND<0.009	0.044	ND<0.01	0.017	0.038	ND<0.009	0.37	0.23	ND<0.009	-	-	-	
Acenaphthene	0.011	0.010	ND<0.009	ND<0.007	ND<0.01	ND<0.008	ND<0.008	ND<0.009	0.021	0.011	ND<0.009	3,600	45,000	-	-
Fluorene	0.028	0.026	ND<0.009	ND<0.007	ND<0.01	ND<0.008	ND<0.008	ND<0.009	0.11	0.051	ND<0.009	-	-	2,301	26,371
Phenanthrene	0.066	0.061	ND<0.009	0.10	ND<0.01	0.049	0.013	ND<0.009	1.0	0.47	ND<0.009	-	-	-	-
Anthracene	0.016	0.015	ND<0.009	0.031	ND<0.01	0.011	0.012	ND<0.009	0.26	0.12	ND<0.009	18,000	230,000	-	-
Fluoranthene	0.079	0.079	ND<0.009	0.28	ND<0.01	0.10	0.082	0.0090	2.2	1.4	0.011	-	-	2,301	26,371
Pyrene	0.082	0.084	ND<0.009	0.26	ND<0.01	0.10	0.12	ND<0.009	2.2	1.5	ND<0.009	1,800	23,000	-	-
Benzo(a)anthracene	0.041	0.041	ND<0.009	0.15	ND<0.01	0.052	0.033	ND<0.009	1.4	0.97	ND<0.009	1.1	21	-	
Chrysene	0.047	0.046	ND<0.009	0.16	ND<0.01	0.058	0.039	ND<0.009	1.4	1.0	ND<0.009	110	2,100	-	
Benzo(b)fluoranthene	0.087	0.083	ND<0.009	0.23	ND<0.01	0.084	0.15	ND<0.009	2.2	1.5	ND<0.009	1.1	21	-	
Benzo(k)fluoranthene	0.033	0.031	ND<0.009	0.075	ND<0.01	0.027	0.051	ND<0.009	0.76	0.56	ND<0.009	11	210	-	-
Benzo(a)pyrene	0.067	0.064	ND<0.009	0.16	ND<0.01	0.065	0.12	ND<0.009	1.9	1.3	ND<0.009	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	0.066	0.059	ND<0.009	0.097	ND<0.01	0.048	0.090	ND<0.009	1.0	0.74	ND<0.009	1.1	21	-	-
Dibenz(a,h)anthracene	0.013	0.012	ND<0.009	0.019	ND<0.01	0.0094	0.019	ND<0.009	0.24	0.16	ND<0.009	0.11	2.1	-	-
Benzo(g,h,i)perylene	0.068	0.061	ND<0.009	0.087	ND<0.01	0.045	0.087	ND<0.009	0.84	0.62	ND<0.009	-	-	-	-
Total Reported PAHs	8.0	7.8	ND	1.71	0.031	0.67	0.88	0.0090	16.0	10.7	0.011	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.1	0.1	0.010	0.23	0.012	0.093	0.17	0.010	2.6	1.8	0.010	-	-		0.58 (urban bkgd)
TOTAL METALS, EPA Method 6020 (mg	g/kg, dry)														
Total Arsenic	8.4	6.9	4.1	3.1	8.6	6.0	2.7	6.4	5.4	4.0	6.9	-	-	16	16
Total Barium	130	140	110	65	140	43	21	140	82	56	140	-	-	11,247	127,382
Total Cadmium	0.56	0.52	ND<0.5	2.0	ND<0.5	65	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	6.9	87
Total Chromium	39	42	34	23	39	36	11	35	23	15	39	-	-	40,223	360,223
Total Lead	68	56	12	150	16	45	15	14	24	26	18	-	-	400	800
Total Mercury	0.11	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	3.1	3.1
Total Selenium	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	390	5,800	-	-
Total Silver	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	237	2,483
TPH (mg/kg, dry)		•		•	•		•					-			
ТРН	170	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-	-		

NOTES:

NOTES:
Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule
EPA Regional Screening Levels (RSLs) fromMay 2020 RSL Summary Table. RSLs not included when a VSS exists.
Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.
Dashed Cell=no published value (VSS) or published value not applicable (RSL)

Brownfields Phase II Environmental Site Assessment

Pigeon Property Westford, Vermont Soil Data Summary Page 4 of 11

				8	0 1 01 11						
Sample Identification	SB-1	SB-2S	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5			
Sample Depth (ft. bg)	0-1.5	0-1.5	0-1.5	9-11	9-10	0-1.5	0-1.5	9-10	EPA Residential	EPA Industrial	VSS Residential
PID Reading (ppm)	0.2	193.0	1.8	39.4	2.7	1.3	0.3	2.7	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)
Sample Date	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20			
PCBs, EPA Method 8082 (mg/kg)											
Aroclor - 1016	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	4.1	27	NA
Aroclor - 1221	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	0.2	0.83	NA
Aroclor - 1232	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	0.17	0.72	NA
Aroclor - 1242	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	0.23	0.95	NA
Aroclor - 1248	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	0.23	0.94	NA
Aroclor - 1254	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	NA	0.97	0.12
Aroclor - 1260	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	0.24	0.99	NA
Aroclor - 1262	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	NA	NA	NA
Aroclor - 1268	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	NA	NA	NA
Total PCBs	ND	ND	ND	ND	ND	ND	ND	ND	-	-	0.114

Toxic Equivalency Calculations Pigeon Property Page 5 of 11

LEE LE-Environmental

UST-1

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene					
Benzo(a)anthracene	0.041	0.1	0.0041					
Chrysene	0.047	0.001	0.000047					
Benzo(b)fluoranthene	0.087	0.1	0.0087					
Benzo(k)fluoranthene	0.033	0.01	0.00033					
Benzo(a)pyrene	0.067	1	0.067					
Indeno(1,2,3-cd)pyrene	0.066	0.1	0.0066					
Dibenz(a,h)anthracene	0.013	1	0.013					
Total Benzo(a)pyrene Equivalent = 0.100								

DUP UST-1

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.041	0.1	0.0041
Chrysene	0.046 0.001		0.000046
Benzo(b)fluoranthene	0.083	0.1	0.0083
Benzo(k)fluoranthene	0.031	0.01	0.00031
Benzo(a)pyrene	0.064	1	0.064
Indeno(1,2,3-cd)pyrene	0.059	0.1	0.0059
Dibenz(a,h)anthracene	0.012	1	0.012
	0.095		

SB-1

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene			
Benzo(a)anthracene	ND<0.009	0.1	0.00045			
Chrysene	ND<0.009	0.001	0.0000045			
Benzo(b)fluoranthene	ND<0.009	0.1	0.00045			
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045			
Benzo(a)pyrene	ND<0.009	1	0.0045			
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045			
Dibenz(a,h)anthracene	ND<0.009	1	0.0045			
Total Benzo(a)pyrene Equivalent = 0.						

SB-2S

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene			
Benzo(a)anthracene	0.15	0.1	0.015			
Chrysene	0.16	0.16 0.001				
Benzo(b)fluoranthene	0.23	0.1	0.023			
Benzo(k)fluoranthene	0.075	0.01	0.00075			
Benzo(a)pyrene	0.16	1	0.16			
Indeno(1,2,3-cd)pyrene	0.097	0.1	0.0097			
Dibenz(a,h)anthracene	0.019	1	0.019			
Total Benzo(a)pyrene Equivalent = 0.228						

SB-2D

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	ND<0.01	0.1	0.0005
Chrysene	ND<0.01	0.001	0.000005
Benzo(b)fluoranthene	ND<0.01	0.1	0.0005
Benzo(k)fluoranthene	ND<0.01	0.01	0.00005
Benzo(a)pyrene	ND<0.01	1	0.005
Indeno(1,2,3-cd)pyrene	ND<0.01	0.1	0.0005
Dibenz(a,h)anthracene	ND<0.01	1	0.005
	0.012		

Toxic Equivalency Calculations Pigeon Property Page 6 of 11

SB-4S

Contaminant	Concentration (mg/kg)	Toxicity Equivalents to Benzo(a)pyrene			
Benzo(a)anthracene	0.052	0.1	0.0052		
Chrysene	0.058 0.001 0.000058				
Benzo(b)fluoranthene	0.084	0.1	0.0084		
Benzo(k)fluoranthene	0.027	0.027 0.01			
Benzo(a)pyrene	0.065	1	0.065		
Indeno(1,2,3-cd)pyrene	0.048	0.1	0.0048		
Dibenz(a,h)anthracene	0.0094	1	0.0094		
	0.093				

SB-4D

Contaminant	Concentration (mg/kg)	Toxicity Equivalents to Benzo(a)pyrene				
Benzo(a)anthracene	0.033	0.1	0.0033			
Chrysene	0.039	0.039 0.001 0.000039				
Benzo(b)fluoranthene	0.15	0.1	0.015			
Benzo(k)fluoranthene	0.051	0.01	0.00051			
Benzo(a)pyrene	0.12	0.12 1		0.12 1 0.1		
Indeno(1,2,3-cd)pyrene	0.090	0.090 0.1				
Dibenz(a,h)anthracene	0.019	1	0.019			
	Total Benzo(a)pyrene Equivalent :					

SB-5

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene	
Benzo(a)anthracene	ND<0.009	0.1	0.00045	
Chrysene	ND<0.009	0.001	0.0000045	
Benzo(b)fluoranthene	ND<0.009	0.1	0.00045	
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045	
Benzo(a)pyrene	ND<0.009	1	0.0045	
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045	
Dibenz(a,h)anthracene	ND<0.009	1	0.0045	
<u> </u>	0.010			

SB-6

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	1.4	0.1	0.14
Chrysene	1.4	0.001	0.0014
Benzo(b)fluoranthene	2.2	0.1	0.22
Benzo(k)fluoranthene	0.76	0.01	0.0076
Benzo(a)pyrene	1.9	1	1.9
Indeno(1,2,3-cd)pyrene	1.0	0.1	0.1
Dibenz(a,h)anthracene	0.24	1	0.24
	2.6		

SB-7

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene		
Benzo(a)anthracene	0.97	0.1	0.097		
Chrysene	1.0	1.0 0.001 0.001			
Benzo(b)fluoranthene	1.5	0.1	0.15		
Benzo(k)fluoranthene	0.56	0.01	0.0056		
Benzo(a)pyrene	1.3	1	1.3		
Indeno(1,2,3-cd)pyrene	0.74	0.1	0.074		
Dibenz(a,h)anthracene	0.16	1	0.16		
	1.8				

Dup SB-5

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene	
Benzo(a)anthracene	ND<0.009	0.1	0.00045	
Chrysene	ND<0.009	0.001	0.0000045	
Benzo(b)fluoranthene	ND<0.009 0.1		0.00045	
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045	
Benzo(a)pyrene	ND<0.009	ND<0.009 1		
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045	
Dibenz(a,h)anthracene	ND<0.009	1	0.0045	
	0.010			

Brownfields Phase II Environmental Site Assessment Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont

Page 7 of 11

			Page 7	01 11				
Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate		
Depth to Groundwater (Ft)	4.45	6.26	11.59	11.07	10.97	4.45	I-Rule	Vermont
pH (standard units)	6.27	6.41	6.69	6.78	7.01	6.27	Groundwater	
Conductivity (umhos)	7,460	520	103.9	1,006	228.00	7,460	Vapor Intrusion	Groundwater
Temperature (celcius)	16.0	12.3	13.1	15.0	14.6	16.0	Standard-	Enforcement
Turbidity (n.t.u.)	138	173	113	910	NR	138	Resident (ug/l)	Standard (ug/l)
Sample Date	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20		
VOCs, EPA Method 8260c (ug/l)								
Dichlorodifluoromethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Chloromethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Vinyl Chloride	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.13	2
Bromomethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	5
Chloroethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	31,000	
Trichlorofluoromethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Diethyl Ether	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Acetone	ND<1000	12	19	ND<10	50	ND<1000	-	950
1,1-Dichloroethene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	7
Methylene chloride	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	680	5
Carbon disulfide	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Methyl-t-butyl ether (MTBE)	2,100	ND<1	ND<1	2.8	ND<1	2,100	-	11
trans-1,2-Dichloroethene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	100
1,1-Dichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	270	70
2,2-Dichloropropane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
cis-1,2-Dichloroethene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	70
2-Butanone(MEK)	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	511
Bromochloromethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	8
Tetrahydrofuran(THF)	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	=	-
Chloroform	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.41	-
1,1,1-Trichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	200
Carbon tetrachloride	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.24	5
1,1-Dichloropropene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
Benzene	14,000.	1.3	ND<1	ND<1	1.8	13,000.	0.92	5
1,2-Dichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	5
Trichloroethene (TCE)	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.82	5
1,2-Dichloropropane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	5
Dibromomethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
Bromodichloromethane	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
4-Methyl-2-pentanone(MIBK)	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	-
cis-1,3-Dichloropropene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
Toluene	34,000	1.1	ND<1	ND<1	8.2	34,000	-	1000
trans-1,3-Dichloropropene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	=	-
1,1,2-Trichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	5
2-Hexanone	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	-
Tetrachloroethene (PCE)	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	1.5	5
1,3-Dichloropropane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19 Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

NR = no reading due to meter capabilty

Brownfields Phase II Environmental Site Assessment Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont

705 Route 128, Westford, Page 8 of 11

			Page 8	01 11				
Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate		
Depth to Groundwater (Ft)	4.45	6.26	11.59	11.07	10.97	4.45	I-Rule	Vermont
pH (standard units)	6.27	6.41	6.69	6.78	7.01	6.27	Groundwater	Groundwater
Conductivity (umhos)	7,460	520	103.9	1,006	228.00	7,460	Vapor Intrusion	Enforcement
Temperature (celcius)	16.0	12.3	13.1	15.0	14.6	16.0	Standard-	
Turbidity (n.t.u.)	138	173	113	910	NR	138	Resident (ug/l)	Standard (ug/l)
Sample Date	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20		
VOCs, EPA Method 8260c (ug/l)								
Dibromochloromethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,2-Dibromoethane(EDB)	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	0.05
Chlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	100
1,1,1,2-Tetrachloroethane	ND<100	ND<1	ND<2	ND<2	ND<1	ND<100	-	70
Ethylbenzene	3,900	9.4	ND<1	ND<1	1.0	4,000	2.2	700
mp-Xylene	13,000	18	ND<1	ND<1	3.6	14,000	-	10000**
o-Xylene	6,000	2	ND<1	ND<1	1.3	6,300	-	10000**
Styrene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	100
Bromoform	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
IsoPropylbenzene	120	1.5	ND<1	ND<1	ND<1	140	-	-
Bromobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,1,2,2-Tetrachloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,2,3-Trichloropropane	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	0.02
n-Propylbenzene	330	4.1	ND<1	ND<1	ND<1	380	-	-
2-Chlorotoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
4-Chlorotoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,3,5-trimethylbenzene	770	7.1	ND<1	ND<1	ND<1	890	330	23*
tert-Butylbenzene	ND<100	2.1	ND<1	ND<1	ND<1	ND<100	-	-
1,2,4-trimethylbenzene	2,900	22	ND<1	ND<1	1.4	3,200	470	23*
sec-Butylbenzene	ND<100	2.3	ND<1	ND<1	ND<1	ND<100	-	-
1,3-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	600
p-Isopropyltoluene	ND<100	1.1	ND<1	ND<1	ND<1	ND<100	-	-
1,4-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	75
1,2-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	600
n-Butylbenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,2-Dibromo-3-chloropropane	ND<20	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<20	-	0.2
1,2,4-Trichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	70
Hexachlorobutadiene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
Naphthalene	640	5.3	ND<0.5	ND<0.5	0.55	690	4	0.5
1,2,3-Trichlorobenzene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	0.9
Total Reported VOCs	77,760	89	19	2.8	68	78,700		

NOTES:

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule $7/19\,$

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

Brownfields Phase II Environmental Site Assessment Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont

Page 9 of 11

			rage	01 11				
Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate		
Depth to Groundwater (Ft)	4.45	6.26	11.59	11.07	10.97	4.45	I-Rule	Vermont
pH (standard units)	6.27	6.41	6.69	6.78	7.01	6.27	Groundwater	Groundwater
Conductivity (umhos)	7,460	520	103.9	1,006	228.00	7,460	Vapor Intrusion	Enforcement
Temperature (celcius)	16.0	12.3	13.1	15.0	14.6	16.0	Standard-	
Turbidity (n.t.u.)	138	173	113	910	NR	138	Resident (ug/l)	Standard (ug/l)
Sample Date	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20		
RCRA Metals, EPA Method 6020a (mg/	1)							
Total Arsenic	0.017	0.0057		0.0031		0.017	-	0.010
Total Barium	1.6	0.71		0.46		1.6	-	2
Total Cadmium	0.0012	0.0019		0.0012		0.0012	-	0.005
Total Chromium	0.022	ND<0.001	Insufficient	0.0019	Insufficient	0.024	-	0.100
Total Lead	0.12	0.0011	Water	0.0057	Water	0.12	-	0.015
					1			0.000
Total Mercury	ND<0.0001	ND<0.0001		ND<0.0001		ND<0.0001	2.0	0.002
	ND<0.0001 0.0047	ND<0.0001 ND<0.001	ł	ND<0.0001 ND<0.001		0.0034		0.002

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19
Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.
Dashed Cell - no standard

Brownfields Phase II Environmental Site Assessment Drinking Water Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont

Page 10 of 11

Sample	DWS-1	
Sample Date	6/17/20	MCL
VOCs, EPA Method 524.2 (ug/L)	, ,	
Dichlorodifluoromethane	ND<0.5	-
Chloromethane	ND<0.5	-
Vinyl Chloride	ND<0.5	2.
Bromomethane	ND<0.5	-
Chloroethane	ND<0.5	-
Trichlorofluoromethane	ND<0.5	-
Diethyl Ether	ND<5	-
Acetone	ND<10	-
1,1-Dichloroethene	ND<0.5	7
tert-Butyl Alcohol (TBA)	ND<30	
Methylene chloride	ND<0.5	5
Carbon disulfide	ND<2	-
MTBE	ND<0.5	-
trans-1,2-Dichloroethene	ND<0.5	100
1,1-Dichloroethane	ND<0.5	-
2,2-Dichloropropane	ND<0.5	-
cis-1,2-Dichloroethene	ND<0.5	70
2-Butanone(MEK)	ND<5	-
Bromochloromethane	ND<0.5	-
Tetrahydrofuran(THF)	ND<5	-
Chloroform	ND<0.5	80*
1,1,1-Trichloroethane	ND<0.5	200
Carbon tetrachloride	ND<0.5	5
1,1-Dichloropropene	ND<0.5	-
Benzene	ND<0.5	5
1,2-Dichloroethane	ND<0.5	5
Trichloroethene (TCE)	ND<0.5	5
1,2-Dichloropropane	ND<0.5	5
Dibromomethane	ND<0.5	-
Bromodichloromethane	ND<0.5	80*
4-Methyl-2-pentanone(MIBK)	ND<5	-
cis-1,3-Dichloropropene	ND<0.3	-
Toluene	ND<0.5	1000
trans-1,3-Dichloropropene	ND<0.3	-
1,1,2-Trichloroethane	ND<0.5	5
2-Hexanone	ND<5	-
Tetrachloroethene (PCE)	ND<0.05	5
1,3-Dichloropropane	ND<0.05	-
Dibromochloromethane	ND<0.05	80*

NOTES:

Drinking Water Standards - Maximum Contaminant Levels (MCLs) published in the Water Supply Rule, 3/2020 ND<xx = Not Detected< Detection Limit; Results reported above detection limits are indicated in bold Reporting limits and reported concentrations equal to or above the MCL are shaded

 $[\]ensuremath{^*}$ means the indicated enforcement standard is for total trihalomethanes

^{***} means the indicated enforcement standard is for total xylenes

Brownfields Phase II Environmental Site Assessment Drinking Water Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont

Page 11 of 11

Sample	DWS-1	
Sample Date	6/17/20	MCL
VOCs, EPA Method 524.2 (ug/L) (continued))	
1,2-Dibromoethane(EDB)	ND<0.05	0.05
Chlorobenzene	ND<0.05	100
1,1,1,2-Tetrachloroethane	ND<0.5	-
Ethylbenzene	ND<0.5	700
mp-Xylene	ND<0.5	10000***
o-Xylene	ND<0.5	10000***
Styrene	ND<0.5	100
Bromoform	ND<0.5	80*
IsoPropylbenzene	ND<0.5	-
Bromobenzene	ND<0.5	-
1,1,2,2-Tetrachloroethane	ND<0.5	-
1,2,3-Trichloropropane	ND<0.5	-
n-Propylbenzene	ND<0.5	•
2-Chlorotoluene	ND<0.5	-
4-Chlorotoluene	ND<0.5	-
1,3,5-trimethylbenzene	ND<0.5	•
tert-Butylbenzene	ND<0.5	•
1,2,4-trimethylbenzene	ND<0.5	1
sec-Butylbenzene	ND<0.5	1
1,3-Dichlorobenzene	ND<0.5	1
p-Isopropyltoluene	ND<0.5	-
1,4-Dichlorobenzene	ND<0.5	75
1,2-Dichlorobenzene	ND<0.5	600.
n-Butylbenzene	ND<0.5	1
1,2-Dibromo-3-chloropropane	ND<0.5	0.2
1,2,4-Trichlorobenzene	ND<0.5	70
Hexachlorobutadiene	ND<0.5	-
Naphthalene	ND<0.5	-
1,2,3-Trichlorobenzene	ND<0.5	-
Total Reported VOCs	ND	-

NOTES:

Drinking Water Standards - Maximum Contaminant Levels (MCLs) published in the Water Supply Rule, 3/2020 ND<xx = Not Detected< Detection Limit; Results reported above detection limits are indicated in bold Reporting limits and reported concentrations equal to or above the MCL are shaded

^{*} means the indicated enforcement standard is for total trihalomethanes

^{***} means the indicated enforcement standard is for total xylenes

Read the directions, in their entirety, on the 'Directions' Tab before use.

Select chemicals from dropdown list

			*RB-RSV _n	Sample Concentration	Calculated Sample	Calculated Sample
Analyte	CASRN	*RB-RSV., (mg/kg)	(mg/kg)	(mg/kg)	ILCR (unitless)	HQ (unitless)
2,3,7,8-TCDD TEQ ⁶ BaP-TE ⁶	1746-01-6°	2.25E-06 7.28E-02	4.91E-05 NA	1.00E-02	Analyte conc. < RL 1.37E-07	Analyte conc. < RL No noncancer RB-RSV
Bar-TE" Benzo(a)pyrene"	50.32.8	7.28E-02 NA	1.72E+01	1.00E-02	1.37t-07 Included in BaP-TE	No noncancer RB-RSV Analyte conc. < RL
Total PCBs'	1336-36-3	1.14E-01	1.13E+00		Analyte conc. < RL	Analyte conc. < RL
Acetochlor	34256-82-1	NA.	1.22E+03		No cancer RB-RSV	Analyte conc. < RL
Acetone	67-64-1	NA NA	4.06E+04		No cancer RB-RSV	Analyte conc. < RL
Alachlor	15972-60-8 309-00-2	NA 2.02E-02	6.08E+01 2.10E+00		No cancer RB-RSV Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Aluminum	7429-90-5	2.02E-02	7.25E+04		No cancer RB-RSV	Analyte conc. < RL
Antimony	7440-36-0	NA.	2.60E+01		No cancer RB-RSV	Analyte conc. < RL
Barium	7440-39-3	NA NA	1.12E+04	1.10E+02	No cancer RB-RSV	9.78E-03
Benomyl	17804-35-2	1.16E+02	7.90E+02		Analyte conc. < RL	Analyte conc. < RL
Beryflium	71-43-2 7440-41-7	6.98E-01 5.67E+02	1.11E+02 3.45E+01		Analyte conc. < RL Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Bis/2-chloro-1-methyl ethyllether	108,60,1	5.67E+02	3.45E+03		No cancer RR-RSV	Analyte conc. k RL
Boron	7440-42-8	NA NA	1.47E+04		No cancer RB-RSV	Analyte conc. < RL
Bromate	15541-45-4	5.36E-01	2.93E+02		Analyte conc. < RL	Analyte conc. < RL
Bromochloromethane	74-97-5	NA NA	1.93E+02		No cancer RB-RSV	Analyte conc. < RL
Bromoxynil	1689-84-5	2.69E+00	9.12E+02		Analyte conc. < RL	Analyte conc. < RL
Butylbenzene, n- Butylbenzene, sec-	104-51-8 135-98-8	NA NA	3.50E+03 7.01E+03		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Butylbenzene, sec- Butylbenzene, tert-	98.05.6	NA NA	7.01E+03		No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Cadmium (food)	7440-43-9	7.56E+02	6.86E+00		Analyte conc. < RL	Analyte conc. < RL
Carbaryl	63-25-2	3.17E+02	6.08E+03		Analyte conc. < RL	Analyte conc. < RL
Carbon Disulfide	75-15-0	NA NA	6.08E+02		No cancer RB-RSV	Analyte conc. < RL
Carbon tetrachloride	56-23-5	3.72E-01 NA	1.30E+02		Analyte conc. < RL	Analyte conc. < RL
Chlorobenzene Chromium (III) (insoluble salts)	16065-83-1	NA NA	4.14E+02 4.02E+04	3.40E+01	No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL 8.45E-04
Chromium (III) (Insoluble salts)	18540-29-9	9.06E-02	1.16E+02	3,400101	Analyte conc. < RL	Analyte conc. < RL
Cobalt	7440-48-4	1.51E+02	2.19E+01		Analyte conc. < RL	Analyte conc. < RL
Copper	7440-50-8	NA NA	1.04E+04		No cancer RB-RSV	Analyte conc. < RL
Di (2-ethylhexyl) phthalate	117-81-7	1.98E+01	1.22E+03		Analyte conc. < RL	Analyte conc. < RL
Dibromochloropropane	96-12-8	6.00E-03	6.63E+00		Analyte conc. < RL	Analyte conc. < RL
Dibromoethane, 1,2- Dichloroethane, 1,1-	106-93-4 75-34-3	2.27E-02 2.10E+00	1.15E+02 1.40E+04		Analyte conc. < RL	Analyte conc. < RL
Dichloroethane, 1,1- Dichloroethane, 12-	107-06-2	2.10E+00 2.85E-01	4.95E+01		Analyte conc. < RL Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Dichloroethylene, cis 1,2-	156-59-2	NA NA	1.40E+02		No cancer RB-RSV	Analyte conc. < RL
Dichloroethylene, trans 1,2-	156-60-5	NA NA	1.40E+03		No cancer RB-RSV	Analyte conc. < RL
Dichloropropane, 1,2-	78-87-5	1.51E+00	2.63E+01		Analyte conc. < RL	Analyte conc. < RL
Dioxane, 1,4-	123-91-1	2.78E+00 3.68E+00	1.05E+03		Analyte conc. < RL	Analyte conc. < RL
Ethylbenzene	206-44-0	3.68E+00 NA	4.45E+02 2.30E+03		Analyte conc. < RL No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Fluoranthene Fluorene	86-73-7	NA NA	2.30E+03 2.30E+03		No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Hexachlorobenzene	118-74-1	1.31E-01	5.61E+01		Analyte conc. < RL	Analyte conc. < RL
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	121-82-4	4.60E+00	2.90E+02		Analyte conc. < RL	Analyte conc. < RL
Hydrogen cyanide	74-90-8	NA NA	4.91E+01		No cancer RB-RSV	Analyte conc. < RL
Iron	7439-89-6	NA NA	5.13E+04		No cancer RB-RSV	Analyte conc. < RL
Isopropylbenzene (cumene)	98-82-8 7439-96-5	NA NA	2.56E+02 1.12E+03		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Manganese (non-diet) Mercury (elemental)	7439-90-5	NA NA	3.13E+00		No cancer RB-RSV	Analyte conc. < RL
Methyl ethyl ketone	78,93,3	NA NA	1.70F+04		No cancer RB-RSV	Analyte conc. < RL
Methyl tert-butyl ether (MTBE)	1634-04-4	NA NA	6.49E+02		No cancer RB-RSV	Analyte conc. < RL
Molybdenum	7439-98-7	NA NA	3.66E+02		No cancer RB-RSV	Analyte conc. < RL
Naphthalene	91-20-3	2.72E+00	2.24E+02		Analyte conc. < RL	Analyte conc. < RL
Nickel Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX	7440-02-0	5.23E+03 NA	9.40E+02 3.70E+03		Analyte conc. < RL No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Pentachlorophenol	87-86-5	4.84E-01	2.37E+02		Analyte conc. < RL	Analyte conc. < RL
Pentaerythritol tetranitrate (PETN)	78-11-5	NA.	1.22E+02		No cancer RB-RSV	Analyte conc. < RL
Perchiorate	14797-73-0	NA NA	5.13E+01		No cancer RB-RSV	Analyte conc. < RL
Perfluoroheptanoic acid (PFHpA)	375-85-9	NA NA	1.22E+00		No cancer RB-RSV	Analyte conc. < RL
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	NA NA	1.22E+00		No cancer RB-RSV	Analyte conc. < RL
Perfluorononanoic acid (PFNA) Perfluorooctane sulfonic acid (PFOS)	375-95-1 1763-23-1	NA NA	1.22E+00 1.22E+00		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Pefluorooctanoic acid (PFOA)	335-67-1	3.96E+00	1.22E+00		Analyte conc. < RL	Analyte conc. < RL
Propoxur (Baygon)	114-26-1	7.88E+01	2.43E+02		Analyte conc. < RL	Analyte conc. < RL
Propyl benzene, n-	103-65-1	NA NA	2.53E+02		No cancer RB-RSV	Analyte conc. < RL
Selenium	7782-49-2	NA NA	3.66E+02		No cancer RB-RSV	Analyte conc. < RL
Silver	7440-22-4	NA 4 335 - 00	2.37E+02		No cancer RB-RSV	Analyte conc. < RL
Tetrachioroethane, 1,1,1,2- Tetrachioroethylene	630-20-6 127-18-4	1.32E+00 2.38E+00	2.10E+03 1.13E+02		Analyte conc. < RL Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Thallium (soluble Thallium)	7440-28-0**	NA NA	7.33E-01		No cancer RB-RSV	Analyte conc. < RL
Toluene	108-88-3	NA NA	7.06E+02		No cancer RB-RSV	Analyte conc. < RL
Trichloroethylene	79-01-6	6.81E-01	6.21E+00		Analyte conc. < RL	Analyte conc. < RL
Trichloropropane, 1,2,3-	96-18-4	3.11E-03	8.67E+00		Analyte conc. < RL	Analyte conc. < RL
Trimethylbenzene, 1,2,3-	526-73-8	NA NA	2.06E+02		No cancer RB-RSV	Analyte conc. < RL
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5-	95-63-6 108-67-8	NA NA	1.66E+02 1.44E+02		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Trinitrotoluene, 2,4,6- (TNT)	118-96-7	1.15E+01	3.49E+01		Analyte conc. < RL	Analyte conc. < RL
	NA.	NA NA	4.40E+01		No cancer RB-RSV	Analyte conc. < RL
Uranium (soluble salts)		NA.	2.77E+00		No cancer RB-RSV	Analyte conc. < RL
Vanadium	7440-62-2					
Vanadium Vinyl chloride	75-01-4	9.83E-02	8.51E+01		Analyte conc. < RL	Analyte conc. < RL
Vanadium Vinyl chloride Xylenes	75-01-4 1330-20-7	9.83E-02 NA	8.51E+01 2.52E+02		No cancer RB-RSV	Analyte conc. < RL
Vanadium Vinyl chloride Xylenes Zinc	75-01-4 1330-20-7 7440-66-6	9.83E-02	8.51E+01		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Vanadium Vinyl chloride Xylenes	75-01-4 1330-20-7 7440-66-6 pendix E, Table 1.	9.83E-02 NA NA	8.51E+01 2.52E+02 2.20E+04		No cancer RB-RSV	Analyte conc. < RL

Notice:

1.29E-47

1.06E-62

1.29E-47

1.29E-47

1.06E-62

1.29E-47

1.29E-4

f. The Total PCBs row should include the sum of the concentrations for all PCBs except dioxin-like PCBs. Dioxin-like PCBs should be included in the 2,3,7,8-TCDD TE concentration entry.

Version 09/12/19

Read the directions, in their entirety, on the 'Directions' Tab before use.

Select chemicals from dropdown list

					Calculated	Calculated
Analyte	CASRN	100 DCU (0)	*RB-RSV, (mg/kg)	Sample Concentration (mg/kg)	Sample ILCR (unitless)	Sample HO (unitless)
2,3,7,8-TCDD TEQ ⁶	1746-01-6*	*RB-RSV,, (mg/kg) 2.25E-06	(mg/kg) 4.91E-05	(mg/xg)	Analyte conc. < RL	Analyte conc. < RL
BaP-TE ⁴	-	7.28E-02	NA.	9.30E-02	1.28E-06	No noncancer RB-RSV
Benzo(a)pyrene* Total PCRe*	50-32-8	NA 1.14F-01	1.72E+01 1.13E+00	6.50E-02	Included in BaP-TE Analyte conc. < RI	3.79E-03 Analyte conc. x 81
Total PCBs' Anethorhior	1336-36-3 34256-82-1	1.14E-01 NA	1.13E+00 1.22E+03		Analyte conc. < RL No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Acetone	67-64-1	NA NA	4.06E+04		No cancer RB-RSV	Analyte conc. < RL
Alachior	15972-60-8	NA NA	6.08E+01		No cancer RB-RSV	Analyte conc. < RL
Aldrin	309-00-2	2.02E-02	2.10E+00		Analyte conc. < RL	Analyte conc. < RL
Aluminum Antimony	7429-90-5 7440-36-0	NA NA	7.25E+04 2.60E+01		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Barium	7440-39-3	NA NA	1.12E+04	4.30E+01	No cancer RB-RSV	3.82E-03
Benomyl	17804-35-2	1.16E+02	7.90E+02		Analyte conc. < RL	Analyte conc. < RL
Benzene	71-43-2	6.98E-01	1.11E+02		Analyte conc. < RL	Analyte conc. < RL
Beryllium Bis(2-chloro-1-methyl ethyl)ether	7440-41-7	5.67E+02 NA	3.45E+01 2.80E+03		Analyte conc. < RL No cancer RR-RSV	Analyte conc. < RL Analyte conc. < RL
Boron	7440-42-8	NA NA	1.47E+04		No cancer RB-RSV	Analyte conc. < RL
Bromate	15541-45-4	5.36E-01	2.93E+02		Analyte conc. < RL	Analyte conc. < RL
Bromochloromethane	74-97-5	NA NA	1.93E+02		No cancer RB-RSV	Analyte conc. < RL
Bromoxynil Butvibenzene, n-	1689-84-5 104-51-8	2.69E+00 NA	9.12E+02 3.50E+03		Analyte conc. < RL No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Butybenzene, sec-	135-98-8	NA NA	7.01E+03		No cancer RB-RSV	Analyte conc. < RL
Butylbenzene, tert-	98-06-6	NA NA	7.01E+03		No cancer RB-RSV	Analyte conc. < RL
Cadmium (food)	7440-43-9	7.56E+02	6.86E+00	6.50E+01	8.60E-08	9.48E+00
Carbaryl Carbon Disulfide	63-25-2 75-15-0	3.17E+02	6.08E+03 6.08E+02		Analyte conc. < RL	Analyte conc. < RL
Carbon Disumbe Carbon tetrachloride	56.23.5	NA 3.72F.01	1.30F±02		No cancer RB-RSV Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Chlorobenzene	108-90-7	NA NA	4.14E+02		No cancer RB-RSV	Analyte conc. < RL
Chromium (III) (insoluble salts)	16065-83-1	NA NA	4.02E+04	3.60E+01	No cancer RB-RSV	8.95E-04
Chromium (VI)	18540-29-9	9.06E-02	1.16E+02		Analyte conc. < RL	Analyte conc. < RL
Copalt Copper	7440-48-4 7440-50-8	1.51E+02 NA	2.19E+01 1.04E+04		Analyte conc. < RL	Analyte conc. < RL
Di (2-ethylhexyl) ohthalate	117-81-7	1.98E+01	1.04E+04 1.22E+03		No cancer RB-RSV Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Dibromochloropropane	96-12-8	6.00E-03	6.63E+00		Analyte conc. < RL	Analyte conc. < RL
Dibromoethane, 1,2-	105-93-4	2.27E-02	1.15E+02		Analyte conc. < RL	Analyte conc. < RL
Dichloroethane, 1,1-	75-34-3	2.10E+00	1.40E+04		Analyte conc. < RL	Analyte conc. < RL
Dichloroethane, 1,2-	107-06-2 156-59-2	2.85E-01 NA	4.95E+01 1.40E+02		Analyte conc. < RL	Analyte conc. < RL
Dichloroethylene, cis 1,2- Dichloroethylene, trans 1,2-	156-60-5	NA NA	1.40E+03		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Dichloropropane, 1,2-	78-87-5	1.51E+00	2.63E+01		Analyte conc. < RL	Analyte conc. < RL
Dioxane, 1,4-	123-91-1	2.78E+00	1.05E+03		Analyte conc. < RL	Analyte conc. < RL
Ethylbenzene	100-41-4 206-44-0	3.68E+00 NA	4.45E+02 2.30E+03		Analyte conc. < RL	Analyte conc. < RL 4.35E-05
Fluoranthene Fluorene	206-44-0 86-73-7	NA NA	2.30E+03 2.30E+03	1.00E-01	No cancer RB-RSV No cancer RB-RSV	4.35E-05 Analyte conc. < RL
Hexachlorobenzene	118-74-1	1.31E-01	5.61E+01		Analyte conc. < RL	Analyte conc. < RL
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	121-82-4	4.60E+00	2.90E+02		Analyte conc. < RL	Analyte conc. < RL
Hydrogen cyanide	74-90-8	NA NA	4.91E+01		No cancer RB-RSV	Analyte conc. < RL
Iron	7439-89-6	NA NA	5.13E+04 2.56E+02		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL
isopropylbenzene (cumene) Manganese (non-diet)	7439-96-5	NA NA	2.56E+02 1.12E+03		No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Mercury (elemental)	7439-97-6	NA.	3.13E+00		No cancer RB-RSV	Analyte conc. < RL
Methyl ethyl ketone	78-93-3	NA NA	1.70E+04		No cancer RB-RSV	Analyte conc. < RL
Methyl tert-butyl ether (MTBE)	1634-04-4	NA NA	6.49E+02 3.66E+02		No cancer RB-RSV	Analyte conc. < RL
Molybdenum Naphthalene	7439-98-7 91-20-3	NA 2.72E+00	3.66E+02 2.24E+02		No cancer RB-RSV Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Nickel	7440-02-0	5.23E+03	9.40E+02		Analyte conc. < RL	Analyte conc. < RL
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	2691-41-0	NA NA	3.70E+03		No cancer RB-RSV	Analyte conc. < RL
Pentachlorophenol	87-86-5	4.84E-01	2.37E+02		Analyte conc. < RL	Analyte conc. < RL
Pentaerythritol tetranitrate (PETN) Perchlorate	78-11-5	NA NA	1.22E+02 5.13E+01		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL
Perfluoroheptanoic acid (PFHpA)	375-85-9	NA NA	1.22E+00		No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	NA NA	1.22E+00		No cancer RB-RSV	Analyte conc. < RL
Perfluorononanoic acid (PFNA)	375-95-1	NA NA	1.22E+00		No cancer RB-RSV	Analyte conc. < RL
Perfluorooctane sulfonic acid (PFOS)	1763-23-1 335-67-1	NA 3.96E+00	1.22E+00 1.22E+00		No cancer RB-RSV	Analyte conc. < RL
Pefluorooctanoic acid (PFOA) Propoxur (Baygon)	114-26-1	7.88E+00	2.43E+00		Analyte conc. < RL Analyte conc. < RL	Analyte conc. < RL Analyte conc. < RL
Propyl benzene, n-	103-65-1	NA NA	2.53E+02		No cancer RB-RSV	Analyte conc. < RL
Selenium	7782-49-2	NA NA	3.66E+02		No cancer RB-RSV	Analyte conc. < RL
Silver	7440-22-4	NA NA	2.37E+02		No cancer RB-RSV	Analyte conc. < RL
Tetrachloroethane, 1,1,1,2-	630-20-6 127-18-4	1.32E+00 2.38E+00	2.10E+03 1.13E+02		Analyte conc. < RL	Analyte conc. < RL
Tetrachloroethylene Thallium (soluble Thallium)	7440-28-0**	2.38E+00	7.33E-01		Analyte conc. < RL No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Toluene	108-88-3	NA NA	7.06E+02		No cancer RB-RSV	Analyte conc. < RL
Trichloroethylene	79-01-6	6.81E-01	6.21E+00		Analyte conc. < RL	Analyte conc. < RL
Trichloropropane, 1,2,3-	96-18-4	3.11E-03	8.67E+00		Analyte conc. < RL	Analyte conc. < RL
Trimethylbenzene, 1,2,3-	526-73-8	NA NA	2.06E+02		No cancer R8-RSV	Analyte conc. < RL
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5-	95-63-6 108-67-8	NA NA	1.66E+02 1.44E+02		No cancer RB-RSV No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Trinitrotoluene, 2,4,6- (TNT)	118-96-7	1.15E+01	3.49E+01		Analyte conc. < RL	Analyte conc. < RL
Uranium (soluble salts)	NA.	NA NA	4.40E+01		No cancer R8-RSV	Analyte conc. < RL
Vanadium	7440-62-2	NA NA	2.77E+00		No cancer RB-RSV	Analyte conc. < RL
Vinyl chloride Xylenes	75-01-4	9.83E-02 NA	8.51E+01 2.52E+02		Analyte conc. < RL No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
Xytenes Zinc	7440-66-6	NA NA	2.32E+02 2.20E+04		No cancer RB-RSV	Analyte conc. < RL Analyte conc. < RL
a. RB-RSV _{is} corresponds to a one-in-one million ILCR. See IRULE App			2.202-04		Sample	Sample
b. RB-RSV _n corresponds to a HQ of 1 based on Hypothetical Young 0		nario. See IRULE Appendi	s E, Table 1.		Cumulative ILCR:	HI:
					1.36E-06	9.49E+00

Version 09/12/19

Notice:

1 Indic de (jum of hazard Quodents)

14 - Hazard Quodents)

14 - Hazard Quodents (jum of hazard Quodents)

15 - Hazard Quodents (jum of hazard Quodents)

16 - Hazard Quodents (jum of hazard Quodents)

18
f. The Total PCBs row should include the sum of the concentrations for all PCBs except dioxin-like PCBs. Dioxin-like PCBs should be included in the 2,3,7,8-TCDD TE concentration entry.

Angela Emerson LE Environmental LLC 21 North Main Street #1 Waterbury, VT 05676

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 211268

Client Identification: 1705 Route 128 | 19-138

Date Received: 6/5/2020

Dear Ms. Emerson:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

SAMPLE CONDITIONS PAGE

Client: LE Environmental LLC

Temperature upon receipt (°C): 2.6

Client Designation: 1705 Route 128 | 19-138

Received on ice or cold packs (Yes/No): Y

EALID#: 211268

Acceptable temperature range (°C): 0-6

Acceptable to	shiperature range (C). 0-0					
Lab ID	Sample iD	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)
211268.01	UST-1	6/5/20	6/2/20	soil	73.2	Adheres to Sample Acceptance Policy
211268.02	Duplicate	6/5/20	6/2/20	soil	74.8	Adheres to Sample Acceptance Policy
211268.03	Trip Blank	6/5/20	6/2/20	soil	100.0	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis. Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

- 1) EPA 600/4-79-020, 1983
- 2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 4th edition, 1992

EALID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:	UST-1	Duplicate	Trip Blank		
		- / /	244000.00		
Lab Sample ID:	211268.01	211268.02	211268.03		
Matrix:	soil	soil	soil		
Date Sampled:	6/2/20	6/2/20	6/2/20		
Date Received:	6/5/20	6/5/20	6/5/20		
Units:	mg/kg	mg/kg	mg/kg		
*	6/9/20	6/9/20	6/10/20		
Date of Analysis:					
Analyst:	JAK	JAK	JAK		
Method:	8260C	8260C	8260C		
Dilution Factor:	1	1	1		
Dichlorodifluoromethane	< 0.1	< 0.1	< 0.1		
Chloromethane	< 0.1	< 0.1	< 0.1		
Vinyl chloride	< 0.03	< 0.02	< 0.02		
Bromomethane	< 0.1	< 0.1	< 0.1		
Chloroethane Trichloroftuoromothano	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1		
Trichlorofluoromethane Diethyl Ether	< 0.16	< 0.16	< 0.05		
Acetone	< 3	< 2	< 2		
1,1-Dichloroethene	< 0.06	< 0.06	< 0.05		
Methylene chloride	< 0.1	< 0.1	< 0.1	•	
Carbon disulfide	< 0.1	< 0.1	< 0.1		
Methyl-t-butyl ether(MTBE)	< 0.1	< 0.1	< 0.1 < 0.05		
trans-1,2-Dichloroethene 1,1-Dichloroethane	< 0.06 < 0.06	< 0.06 < 0.06	< 0.05 < 0.05		
2,2-Dichloropropane	< 0.06	< 0.06	< 0.05		
cis-1,2-Dichloroethene	< 0.06	< 0.06	< 0.05		
2-Butanone(MEK)	< 0.6	< 0.6	< 0.5		
Bromochloromethane	< 0.06	< 0.06	< 0.05		
Tetrah y drofuran(THF)	< 0.6	< 0.6	< 0.5		
Chloroform	< 0.06 < 0.06	< 0.06 < 0.06	< 0.05 < 0.05		
1,1,1-Trichloroethane Carbon tetrachloride	< 0.06	< 0.06	< 0.05		
1,1-Dichloropropene	< 0.06	< 0.06	< 0.05		
Benzene	43	32	< 0.05		
1,2-Dichloroethane	< 0.06	< 0.06	< 0.05		
Trichloroethene	< 0.06	< 0.06	< 0.05		
1,2-Dichloropropane	< 0.06	< 0.06	< 0.05		
Dibromomethane Bromodichloromethane	< 0.06 < 0.06	< 0.06 < 0.06	< 0.05 < 0.05		
Bromodicnioromethane 4-Methyl-2-pentanone(MIBK)	< 0.6	< 0.06	< 0.05		
cis-1,3-Dichloropropene	< 0.06	< 0.06	< 0.05		
Toluene	610	520	< 0.05		
trans-1,3-Dichloropropene	< 0.06	< 0.06	< 0.05		
1,1,2-Trichloroethane	< 0.06	< 0.06	< 0.05		
2-Hexanone	< 0.1	< 0.1	< 0.1		
Tetrachloroethene	< 0.06 < 0.06	< 0.06 < 0.06	< 0.05 < 0.05		
1,3-Dichloropropane Dibromochloromethane	< 0.06 < 0.06	< 0.06	< 0.05 < 0.05		
1,2-Dibromoethane(EDB)	< 0.03	< 0.02	< 0.02		
Chlorobenzene	< 0.06	< 0.06	< 0.05		
1,1,1,2-Tetrachloroethane	< 0.06	< 0.06	< 0.05		
Ethylbenzene	150	120	< 0.05		
mp-Xylene	700	620	< 0.05		
o-Xylene	280 < 0.06	250 < 0.06	< 0.05 < 0.05		
	Suun	< U UD	> u.ua		
Styrene Bromoform	< 0.06	< 0.06	< 0.05		

EAI ID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:	UST-1	Duplicate	Trip Blank	
Lab Sample ID:	211268.01	211268.02	211268.03	
Matrix:	soil	soil	soil	
Date Sampled:	6/2/20	6/2/20	6/2/20	
Date Received:	6/5/20	6/5/20	6/5/20	
Units:	mg/kg	mg/kg	mg/kg	
Date of Analysis:	6/9/20	6/9/20	6/10/20	
Analyst:	JAK	JAK	JAK	
Method:	8260C	8260C	8260C	
Dilution Factor:	1	1	1	
Bromobenzene	< 0.06	< 0.06	< 0.05	
1,1,2,2-Tetrachloroethane	< 0.06	< 0.06	< 0.05	
1,2,3-Trichloropropane	< 0.06	< 0.06	< 0.05	
n-Propylbenzene 2-Chlorotoluene	46 < 0.06	37 < 0.06	< 0.05 < 0.05	
4-Chlorotoluene	< 0.06	< 0.06	< 0.05 < 0.05	
1,3,5-Trimethylbenzene	86	70	< 0.05	
tert-Butylbenzene	< 0.06	< 0.06	< 0.05	
1,2,4-Trimethylbenzene	340	330	< 0.05	
sec-Butylbenzene	4.7	4.8	< 0.05	
1,3-Dichlorobenzene	< 0.06	< 0.06	< 0.05	
p-Isopropyltoluene 1,4-Dichlorobenzene	2.6 < 0.06	2.7 < 0.06	< 0.05	
1,2-Dichlorobenzene	< 0.06 < 0.06	< 0.06 < 0.06	< 0.05 < 0.05	
n-Butylbenzene	< 0.06	< 0.06	< 0.05	
1,2-Dibromo-3-chloropropane	< 0.06	< 0.06	< 0.05	
1,2,4-Trichlorobenzene	< 0.06	< 0.06	< 0.05	
Hexachlorobutadiene	< 0.06	< 0.06	< 0.05	
Naphthalene	54	43	< 0.1	
1,2,3-Trichlorobenzene	< 0.06	< 0.06	< 0.05	
4-Bromofluorobenzene (surr) 1,2-Dichlorobenzene-d4 (surr)	203 %R 99 %R	181 %R 101 %R	86 %R 107 %R	•
Toluene-d8 (surr)	102 %R	101 %R 106 %R	98 %R	
1,2-Dichloroethane-d4 (surr)	274 %R	266 %R	100 %R	

EAI ID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample Notes/Deviations:

Deviations from the Report:

Parameter: Benzene, Ethylbenzene, IsoPropylbenzene, n-Propylbenzene, 1,3,5-Trimethylbenzene, Naphthalene UST-1

Date of Analysis: 6/10/2020 Dilution Factor: 10

UST-1 Parameter: Toluene, mp-Xylene, o-Xylene, 1,2,4-Trimethylbenzene Date of Analysis: 6/10/2020 Dilution Factor: 50

Duplicate Parameter: Benzene, Ethylbenzene, n-Propylbenzene, 1,3,5-Trimethylbenzene, Naphthalene Date of Analysis:

6/10/2020 Dilution Factor: 10

Parameter: Toluene, mp-Xylene, o-Xylene, 1,2,4-Trimethylbenzene Date of Analysis: 6/10/2020 Dilution Factor: 50 Duplicate

The following analytes were not assessed down to the listed concentrations, 1,2-Dibromo-3-Chloropropane (0.0053mg/kg), 1,2,3-Trichloropropane (0.00311mg/kg) due to sample matrix interference.

IsoPropylbenzene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, sec-Butylbenzene, p-Isopropyltoluene exhibited recovery outside acceptance limits in the Quality Control sample(s). The analyte(s) were not detected in the sample(s).

UST-1 & Duplicate: The surrogates 4-Bromofluorobenzene (surr) & 1,2-Dichloroethane-d4 (surr) demonstrated recovery outside of the acceptance control limits due to non target sample matrix interference.

QC REPORT

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

EAI ID#: 211268

Batch ID: 637269-65884/S060520vVT821

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Dichlorodifluoromethane	< 0.1	1.2 (117 %R)	1.1 (114 %R) (3 RPD)	6/5/2020	mg/kg	40 - 160	20	8260C
Chloromethane	< 0.1	1.2 (119 %R)	1.2 (120 %R) (1 RPD)	6/5/2020	mg/kg	40 - 160	20	8260C
Vinyl chloride	< 0.02	0.79 (79 %R)	0.78 (78 %R) (2 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Bromomethane	< 0.1	1.2 (120 %R)	1.1 (112 %R) (7 RPD)	6/5/2020	mg/kg	40 - 160	20	8260C
Chloroethane	< 0.1	0.94 (94 %R)	0.91 (91 %R) (3 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Trichlorofluoromethane	< 0.1	0.99 (99 %R)	0.99 (99 %R) (1 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Diethyl Ether	< 0.05	0.93 (93 %R)	0.93 (93 %R) (0 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Acetone	< 2	< 2 (98 %R)	< 2 (105 %R) (7 RPD)	6/5/2020	mg/kg	40 - 160	20	8260C
1,1-Dichloroethene	< 0.05	0.96 (96 %R)	0.95 (95 %R) (1 RPD)	6/5/2020	mg/kg	59 - 172	20	8260C
Methylene chloride	< 0.1	0.87 (87 %R)	0.84 (84 %R) (3 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Carbon disulfide	< 0.1	0.97 (97 %R)	0.97 (97 %R) (0 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Methyl-t-butyl ether(MTBE)	< 0.1	1.0 (104 %R)	1.0 (105 %R) (0 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
trans-1,2-Dichloroethene	< 0.05	1.1 (108 %R)	1.0 (105 %R) (3 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,1-Dichloroethane	< 0.05	1.1 (106 %R)	1.0 (104 %R) (2 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
2,2-Dichloropropane	< 0.05	* 1.5 (145 %R)	* 1.4 (143 %R) (2 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
cis-1,2-Dichloroethene	< 0.05	1.1 (113 %R)	1.1 (113 %R) (1 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
2-Butanone(MEK)	< 0.5	0.97 (97 %R)	1.0 (100 %R) (3 RPD)		mg/kg	40 - 160	20	8260C
Bromochloromethane	< 0.05	1.1 (106 %R)	1.0 (103 %R) (3 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Tetrahydrofuran(THF)	< 0.5	1.0 (102 %R)	1.0 (104 %R) (2 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Chloroform	< 0.05	1.0 (102 %R)	1.0 (101 %R) (1 RPD)		mg/kg	70 - 130	20	8260C
1,1,1-Trichloroethane	< 0.05	1.2 (119 %R)	1.2 (118 %R) (0 RPD)		mg/kg	70 - 130	20	8260C
Carbon tetrachloride	< 0.05	1.1 (112 %R)	1.1 (111 %R) (1 RPD)		mg/kg	70 - 130	20	8260C
1,1-Dichloropropene	< 0.05	1.2 (117 %R)	1.2 (117 %R) (0 RPD)		mg/kg	70 - 130	20	8260C
Benzene	< 0.05	1.0 (104 %R)	1.0 (103 %R) (1 RPD)		mg/kg	66 - 142	20	8260C
1,2-Dichloroethane	< 0.05	0.98 (98 %R)	0.97 (97 %R) (1 RPD)		mg/kg	70 - 130	20	8260C
Trichloroethene	< 0.05	1.1 (112 %R)	1.1 (109 %R) (2 RPD)		mg/kg	62 - 137	20	8260C
1,2-Dichloropropane	< 0.05	1.1 (106 %R)	1.1 (106 %R) (1 RPD)		mg/kg	70 - 130	20	8260C
Dibromomethane	< 0.05	0.98 (98 %R)	0.95 (95 %R) (4 RPD)		mg/kg	70 - 130	20	8260C
Bromodichloromethane	< 0.05	1.1 (107 %R)	1.0 (104 %R) (3 RPD)		mg/kg	70 - 130	20	8260C
4-Methyl-2-pentanone(MIBK)	< 0.5	1.1 (105 %R)	1.1 (106 %R) (1 RPD)		mg/kg	40 - 160	20	8260C
cis-1,3-Dichloropropene	< 0.05	1.2 (116 %R)	1.1 (114 %R) (2 RPD)		mg/kg	70 - 130	20	8260C
Toluene	< 0.05	1.1 (112 %R)	1.1 (108 %R) (3 RPD)	6/5/2020	mg/kg	59 - 139	20	8260C
trans-1,3-Dichloropropene	< 0.05	1.2 (116 %R)	1.1 (111 %R) (4 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,1,2-Trichloroethane	< 0.05	1.1 (106 %R)	1.0 (103 %R) (3 RPD)		mg/kg	70 - 130	20	8260C
2-Hexanone	< 0.1	0.92 (92 %R)	0.93 (93 %R) (1 RPD)		mg/kg	40 - 160	20	8260C
Tetrachloroethene	< 0.05	1.2 (117 %R)	1.1 (111 %R) (5 RPD)		mg/kg	70 - 130	20	8260C
1,3-Dichloropropane	< 0.05	0.99 (99 %R)	0.95 (95 %R) (4 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Dibromochloromethane	< 0.05	1.0 (102 %R)	0.97 (97 %R) (5 RPD)		mg/kg	70 - 130	20	8260C
1,2-Dibromoethane(EDB)	< 0.02	1.0 (105 %R)	1.0 (103 %R) (2 RPD)		mg/kg	70 - 130	20	8260C
Chlorobenzene	< 0.05	1.1 (113 %R)	1.1 (109 %R) (3 RPD)		mg/kg	60 - 133	20	8260C
1,1,1,2-Tetrachloroethane	< 0.05	1.1 (106 %R)	1.0 (102 %R) (4 RPD)		mg/kg	70 - 130	20	8260C
Ethylbenzene	< 0.05	1.2 (124 %R)	1.2 (120 %R) (3 RPD)		mg/kg	70 - 130	20	8260C
mp-Xylene	< 0.05	2.5 (127 %R)	2.4 (122 %R) (4 RPD)		mg/kg	70 - 130	20	8260C
o-Xylene	< 0.05	1.2 (122 %R)	1.2 (118 %R) (4 RPD)		mg/kg	70 - 130	20	8260C
Styrene	< 0.05	1.3 (126 %R)	1.1 (114 %R) (10 RPD)		mg/kg	70 - 130	20	8260C
Bromoform	< 0.05	1.0 (102 %R)	0.98 (98 %R) (5 RPD)		mg/kg	70 - 130	20	8260C
		((/ // (- / 1 - /	3				

QC REPORT

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138 EAI ID#: 211268

Batch ID: 637269-65884/S060520vVT821

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
IsoPropylbenzene	< 0.05	* 1.4 (142 %R)	* 1.4 (136 %R) (5 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Bromobenzene	< 0.05	1.1 (109 %R)	0.98 (98 %R) (11 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,1,2,2-Tetrachloroethane	< 0.05	1.1 (109 %R)	1.0 (101 %R) (8 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,2,3-Trichloropropane	< 0.05	1.1 (108 %R)	0.99 (99 %R) (9 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
n-Propylbenzene	< 0.05	1.3 (129 %R)	1.2 (117 %R) (10 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
2-Chlorotoluene	< 0.05	1.2 (124 %R)	1.1 (112 %R) (10 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
4-Chlorotoluene	< 0.05	1.2 (116 %R)	1.0 (104 %R) (11 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,3,5-Trimethylbenzene	< 0.05	* 1.3 (132 %R)	1.2 (120 %R) (9 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
tert-Butylbenzene	< 0.05	1.3 (127 %R)	1.1 (114 %R) (11 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,2,4-Trimethylbenzene	< 0.05	* 1.3 (131 %R)	1.2 (119 %R) (9 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
sec-Butylbenzene	< 0.05	* 1.3 (134 %R)	1.2 (122 %R) (9 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,3-Dichlorobenzene	< 0.05	1.2 (117 %R)	1.1 (108 %R) (8 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
p-Isopropyltoluene	< 0.05	* 1.4 (135 %R)	1.3 (125 %R) (8 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,4-Dichlorobenzene	< 0.05	1.1 (110 %R)	1.0 (102 %R) (8 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,2-Dichlorobenzene	< 0.05	1.1 (112 %R)	1.0 (103 %R) (8 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
n-Butylbenzene	< 0.05	1.2 (123 %R)	1.1 (114 %R) (8 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,2-Dibromo-3-chloropropane	< 0.05	0.96 (96 %R)	0.91 (91 %R) (5 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,2,4-Trichlorobenzene	< 0.05	1.1 (107 %R)	1.0 (102 %R) (5 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Hexachlorobutadiene	< 0.05	1.0 (105 %R)	0.99 (99 %R) (5 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
Naphthalene	< 0.1	0.96 (96 %R)	0.96 (96 %R) (0 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
1,2,3-Trichlorobenzene	< 0.05	1.0 (101 %R)	0.99 (99 %R) (2 RPD)	6/5/2020	mg/kg	70 - 130	20	8260C
4-Bromofluorobenzene (surr)	82 %R	97 %R	99 %R	6/5/2020	% Rec	70 - 130	20	8260C
1,2-Dichlorobenzene-d4 (surr)	108 %R	102 %R	99 %R	6/5/2020	% Rec	70 - 130	20	8260C
Toluene-d8 (surr)	97 %R	100 %R	98 %R	6/5/2020	% Rec	70 - 130	20	8260C
1,2-Dichloroethane-d4 (surr)	96 %R	91 %R	91 %R	6/5/2020	% Rec	70 - 130	20	8260C

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/!Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EAI ID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Client Sample ID:	UST-1				
Lab Sample ID:	211268.01				
Matrix:	soil				
Date Sampled:	6/2/20				
ate Received:	6/5/20				
Date Prepared:	6/8/20				
Inits	mg/kg				
l lethod	8270D				
nalyst	JMR		•		
	Results	Dilution Factor	Date Analyzed	TEF	TEQ
aphthalene	3.5	1	6/8/20		
Methylnaphthalene	2.6	1	6/8/20		
Methylnaphthalene	1.2	1	6/8/20		
enaphthylene	0.042	1	6/8/20		
enaphthene	0.011	1	6/8/20		
orene	0.028	1	6/8/20		
enanthrene	0.066	1	6/8/20		
thracene	0.016	1	6/8/20		
oranthene	0.079	1	6/8/20		
rene	0.082	1	6/8/20		
nzo[a]anthracene	0.041	1	6/8/20	0.1	.0041
ırysene	0.047	1	6/8/20	0.001	.000047
nzo[b]fluoranthene	0.087	1	6/8/20	0.1	.0087
nzo[k]fluoranthene	0.033	1	6/8/20	0.01	.00033
nzo[a]pyrene	0.067	1	6/8/20	1	.067
eno[1,2,3-cd]pyrene	0.066	1	6/8/20	0.1	.0066
enz[a,h]anthracene	0.013	1	6/8/20	1	.013
enzo[g,h,i]perylene	0.068	1	6/8/20		
Гегрhenyl-D14 (surr)	70 %R		6/8/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

	······				
Client Sample ID:	Duplicate				
Lab Sample ID:	211268.02				
flatrix:	soil				
ate Sampled:	6/2/20				
ate Received:	6/5/20				
ate Prepared:	6/8/20				
nits	mg/kg				
ethod	8270D				
nalyst	JMR				
		Dilution			
	Results	Factor	Date Analyzed	TEF	TEQ
phthalene	3.4	1	6/8/20		
ethylnaphthalene	2.5	1	6/8/20		
lethylnaphthalene	1.2	1	6/8/20		
enaphthylene	0.036	1	6/8/20		
enaphthene	0.010	1	6/8/20		
orene	0.026	1	6/8/20		
enanthrene	0.061	1	6/8/20		
hracene	0.015	1	6/8/20		
oranthene	0.079	1	6/8/20		
rene	0.084	1	6/8/20		
nzo[a]anthracene	0.041	1	6/8/20	0.1	.0041
ysene	0.046	1	6/8/20	0.001	.000046
nzo[b]fluoranthene	0.083	1	6/8/20	0.1	.0083
zo[k]fluoranthene	0.031	1	6/8/20	0.01	.00031
zo[a]pyrene	0.064	1	6/8/20	1	.064
eno[1,2,3-cd]pyrene	0.059	1	6/8/20	0.1	.0059
enz[a,h]anthracene	0.012	1	6/8/20	1	.012
zo[g,h,i]perylene	0.061	1	6/8/20		
erphenyl-D14 (surr)	70 %R		6/8/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

EAI ID#: 211268

Batch ID: 637271-98004/S060820PAH1

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Naphthalene	< 0.007	1.3 (79 %R)	1.3 (76 %R) (3 RPD	6/8/2020	mg/kg	40 - 140	30	8270D
2-Methylnaphthalene	< 0.007	1.4 (84 %R)	1.4 (83 %R) (1 RPD	6/8/2020	mg/kg	40 - 140	30	8270D
1-Methylnaphthalene	< 0.007	1.3 (79 %R)	1.3 (78 %R) (1 RPD	6/8/2020	mg/kg	40 - 140	30	8270D
Acenaphthylene	< 0.007	1.4 (82 %R)	1.4 (82 %R) (0 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Acenaphthene	< 0.007	1.4 (81 %R)	1.3 (80 %R) (1 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Fluorene	< 0.007	1.4 (86 %R)	1.4 (83 %R) (3 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Phenanthrene	< 0.007	1.5 (87 %R)	1.4 (82 %R) (7 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Anthracene	< 0.007	1.4 (87 %R)	1.4 (81 %R) (7 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Fluoranthene	< 0.007	1.5 (88 %R)	1.4 (82 %R) (7 RPD	6/8/2020	mg/kg	40 - 140	30	8270D
Pyrene	< 0.007	1.5 (87 %R)	1.3 (80 %R) (8 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Benzo[a]anthracene	< 0.007	1.5 (89 %R)	1.4 (82 %R) (8 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Chrysene	< 0.007	1.5 (88 %R)	1.4 (83 %R) (7 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Benzo[b]fluoranthene	< 0.007	1.5 (91 %R)	1.4 (84 %R) (8 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Benzo[k]fluoranthene	< 0.007	1.5 (88 %R)	1.3 (81 %R) (9 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Benzo[a]pyrene	< 0.007	1.5 (92 %R)	1.4 (84 %R) (9 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Indeno[1,2,3-cd]pyrene	< 0.007	1.5 (90 %R)	1.4 (84 %R) (7 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Dibenz[a,h]anthracene	< 0.007	1.5 (89 %R)	1.3 (81 %R) (9 RPD) 6/8/2020	mg/kg	40 - 140	30	8270D
Benzo[g,h,i]perylene	< 0.007	1.5 (87 %R)	1.4 (82 %R) (7 RPD	6/8/2020	mg/kg	40 - 140	30	8270D
p-Terphenyl-D14 (surr)	78 %R	86 %R	83 %F	R 6/8/2020	mg/kg	30 - 130	ı	8270D

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EAI ID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:

UST-1

Lab Sample ID: 211268.01 Matrix: soil 6/2/20 Date Sampled: Date Received: 6/5/20 Units: mg/kg Date of Extraction/Prep: 6/8/20 Date of Analysis: 6/8/20 JLB Analyst: Method: 8100mod 1 **Dilution Factor:**

TPH (C9-C40) 170 p-Terphenyl-D14 (surr) 70 %R

Time Response_ 5000000 1.5e+07 2.5e+07 3.5e+07 1e+07 2e+07 3e+07 4e+07 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 UST-1 8.00 9.00 10.00 Signal: SV39695.d\FID1A.ch 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00

:C:\msdchem\1\data\060820\SV39695.d

Operator Acquired Instrument

Sample Name: Misc Info : Vial Number:

8 Jun 2020 TPHGC2 211268.01 SOIL, TPHL2

15:54

using AcqMethod TPH.M

Response_ 2.2e+07 Time 2000000 8000000 4000000 6000000 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07 1e+07 8 2.00 3.00 4.00 5.00 GASOLINE REGULAR - LEADED 6.00 7.00 8.00 9.00 10.00 Signal: SV37040.d\FID1A.ch 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00

:C:\msdchem\1\data\FINGERPRINTS\2019\SV37040.d

Operator Acquired

Sample Name: Instrument GASOLINE REGULAR - LEADED

Vial Number: Misc Info

24

6 Jul 2019 00:38 TPHGC2

using AcqMethod TPH.M

File :C:\msdchem\1\data\060820\SV39685V.d

Operator Acquired

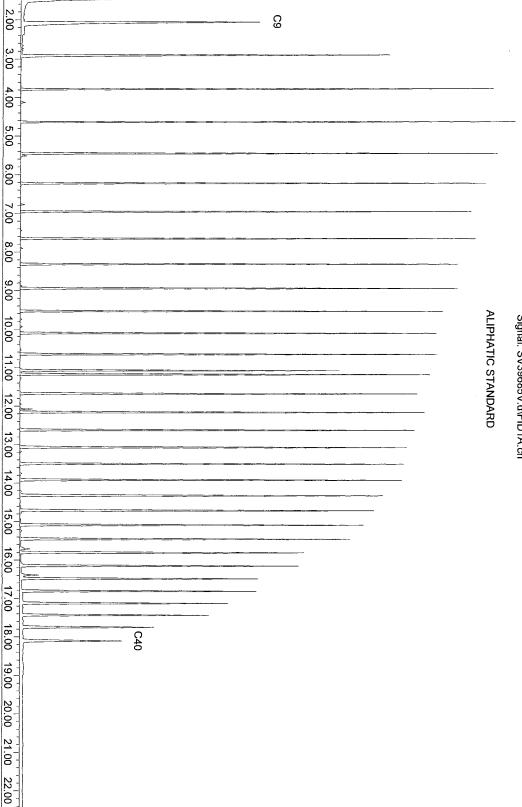
Instrument

ω

Jun 2020 TPHGC2 10:08

using AcqMethod TPH.M

σ


#13364 ALI PT

Sample Name: Misc Info :

Vial Number:

N

Response_ 1.4e+07 Signal: SV39685V.d\FID1A.ch

Time

0.00

1.00

2000000

1000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

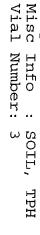
1.2e+07

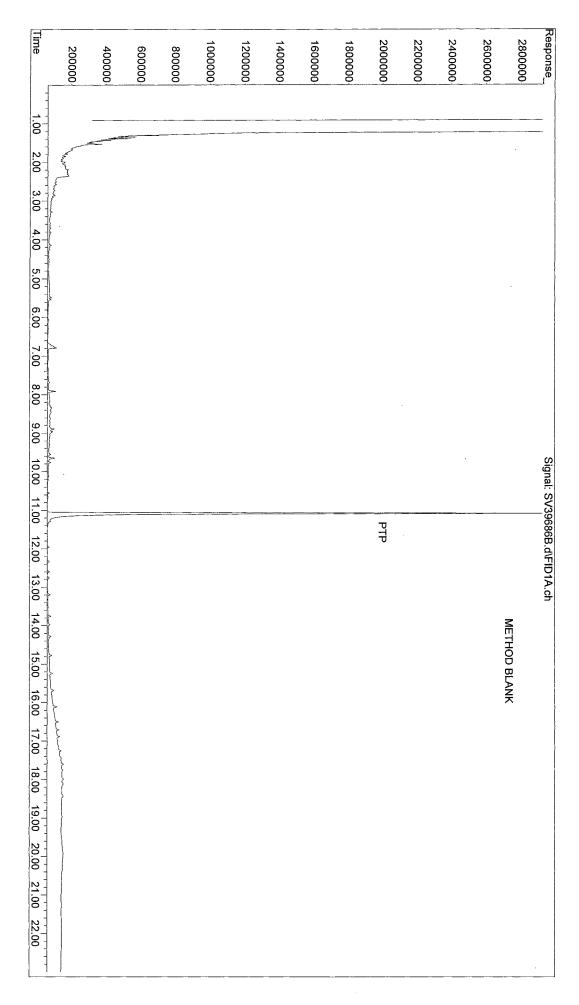
1.1e+07

1e+07

1.3e+07

:C:\msdchem\1\data\060820\SV39686B.d


Operator Acquired Instrument


8 Jun 2020 TPHGC2

11:35

using AcqMethod TPH.M

Sample Name: BLNKS060820TPH1

Client Designation:

Client: LE Environmental LLC

1705 Route 128 | 19-138

EAI ID#: **211268**

Batch ID: 637271-98640/S060820TPH1

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
TPH (C9-C40)	< 20	53 (67 %R)	56 (71 %R) (6 RPD)) 6/8/2020	mg/kg	30 - 160	30	8100mod
p-Terphenyl-D14 (surr)	68 %R	73 %R	78 %F	R 6/8/2020	% Rec	30 - 130		8100mod

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

M

LABORATORY REPORT

EAI ID#: 211268

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:	UST-1	Duplicate					
Lab Sample ID:	211268.01	211268.02				,	
Matrix:	soil	soil	•				
Date Sampled:	6/2/20	6/2/20	Analytical		Date of		
Date Received:	6/5/20	6/5/20	Matrix	Units	Analysis	Method A	nalyst
Arsenic	8.4	6.9	SolTotDry	mg/kg	6/8/20	6020	DS
Barium	130	140	SolTotDry	mg/kg	6/8/20	6020	DS
Cadmium	0.56	0.52	SolTotDry	mg/kg	6/8/20	6020	DS
Chromium	39	42	SolTotDry	mg/kg	6/8/20	6020	DS
Lead	68	56	SolTotDry	mg/kg	6/8/20	6020	DS
Mercury	0.11	< 0.1	SolTotDry	mg/kg	6/8/20	6020	DS
Selenium	< 0.5	< 0.5	SolTotDry	mg/kg	6/8/20	6020	DS
Silver	< 0.5	< 0.5	SolTotDry	mg/kg	6/8/20	6020	DS

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

	OHOTE #:	REGULATORY PROGRAM: NPDES: RGP POTW STORM	STATE: NH MA ME	SITE NAME: 1705 Poute	E-MAIL: DAMgela (a) Leem	PHONE: \$82 - 917-422	Lound	ADDRESS: 21 N. Main St Unit &	PROJECT MANAGER: Angela	MARIX: A-AIR; 3-2011; GW-GROUND WAIER; SW-SURFACE WAIER; DW-DRINKING WAIER; WW-WASTE WATER PRESERVATIVE: H-HCL; N-HNO3; S-H2SO4; Na-NaOH; M-MEOH							7000	Duplicate	UST-	SAMPLE I.D.	
	PO #:	P POTW STORMWATER OR	VT) OTHER:	3 [28	eenv. net	&EXT.:	STATE: VT	St Juit #	\sim	IR; DVV-DRINGH Na-NaOH; M-MEOH						- 1	1000 : 0800 I		W2/2011545	SAMPLING DATE/TIME * F COMPOSITE, NDICATE BOTH START & FINISH DATE/TIME	
						[20			WAIE			-				<u>5</u>	©		Matrix (see below) Grab/*Composite	
						the state of the s	IIP: 05676										×	X		524.2 BTEX 524.2 MTBE ONLY 8260 624 VTICs I, 4 DIOXANE	٧o
RELI	7	A STATE OF THE PARTY OF THE PAR	2	SAMPLE)(S):			>	QA/QC	DAT	-										8021 BTEX HALOS 8015 GRO MAYPH	Ŏ,
RELINQUISHED BY:	RELINQUISHED BY:	Signature of the state of the s	March	(S)	Z			QA/QC REPORTING LEVEL	DATE NEEDED:		-									8270 \$25 SYTICS EDB DBCP	
HED	HED	The Con-		Z	MA MCP	OR.	В	EV EV	THE THE											ABN A BN (PAH) TPH8100 LI L2	S
8¥:	S.	72	M	naide	Ą			Ħ,												8015 DRO MAEPH	Š.
			mers 6/5/20	ست.			O		Normal											PEST 608 PCB 608	Ŏ
DATE:	DAIE:	C-5-76		Emusn					M A											OIL & GREASE 1664 TPH 1664	
į		3	5/2	- K	E-MAIL	ELECTRONIC OPTIONS		REPORTING OPTIONS PRELIMS: YES OR NO	1 1											TCLP 1311 ABN METALS VOC PEST HERB	TCLP
	-		-		PDF	RONIC		RTING	TAT											DISSOLVED METALS (LIST BELOW)	TCLP METALS
TIME:	IME:	3:35			웃	0												X	X	TOTAL METALS (LIST BELOW)	ALS
	6	150	27		Equis	SNO	1	PTIONS												TS TSS TDS SPEC. CON.	
RECE	SEC.)					11		_									BR CI F SO ₄ NO ₂ NO ₃ NO ₃ NO ₂	5
RECEIVED BY:	(ECEIVED 68):			•	EXCEL			ICE?	TEMP.				`							BOD CBOD T. ALK.	NORG
τ.		0	K					_	0						-				-	TKN NH ₃ T. Phos. O. Phos.	Q
		2							1					-						pH T. Res. CHLORINE	
		R						8	C.			-								COD PHENOLS TOC DOC TOTAL CYANIDE TOTAL SULFIDE	CS
<u>'</u>	<u>.</u>	<u>.</u> ⊼		1	ه .	z	150	·			-							-	ļ	REACTIVE CYANIDE REACTIVE SULFIDE	
FIELD READINGS: 1, 1014 POW	SPECTE	E HIST		77	*	OTES: (II	SAMPLES FIELD FILTERED?	OTHER METALS:	METALS:									-		FLASHPOINT IGNITABILITY TOTAL COLIFORM E. COLI	Z
ADINGS:	D CONT	- 	c	N. W.	\sim	E: SPECI	ES FIE	ETALS:				-								FECAL COLIFORM ENTEROCOCCI HETEROTROPHIC PLATE COUNT	MICRO OTHER
	TAMINAT	KWA NO		A A.	Č	IAL DET	H G		8 ROLA		+									INCIDENTIAL FERE COUNT	Ö
0	ION:	\$ @_		Ž (-	ECTION	LTER														H
00	Zant.	(N) <			NOCK	LIMITS,	ED?		13 PP		<u> </u>										焸
5	SUSPECTED CONTAMINATION: GIASSLIPAE				* 8100 Hydrocarbon	NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)	$ \Box$										_	<i>(</i> ك		# OF CONTAINERS	
					1	G INFO,] YES		FE, MN								50	50	50	ME Z	
		6				IF DIFF			P								5000°	50007	50006	NOTES MEOH VIAL #	
		SITE HISTORY FOURNEY GUS Shating Anda Garage				ERENT)	20		PB, CU									الله ا		# °	-
	6	E C																		٠	• '

M Eastern Analytical, Inc. professional laboratory and drilling services

25 Chenell Drive | Concord, NH 03301 | Tel: 603.228.0525 | 1.800.287.0525 | E-Mail: CustomerService@EasternAnalytical.com | www.EasternAnalytical.com (WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Angela Emerson LE Environmental LLC 21 North Main Street #1 Waterbury, VT 05676

nelae !

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 211572

Client Identification: 1705 Route 128 | 19-138

Date Received: 6/12/2020

Dear Ms. Emerson:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

: "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

Lorraine Olashaw, Lab Director

Date

of pages (excluding cover letter)

SAMPLE CONDITIONS PAGE

Client: LE Environmental LLC

Temperature upon receipt (°C): 3,8

Client Designation: 1705 Route 128 | 19-138

Received on ice or cold packs (Yes/No): Y

EAI ID#: 211572

Acceptable temperature range (°C): 0-6

	omporatore range (o). c c					
ab ID	Sample ID	Date Received		•	-	Exceptions/Comments (other than thermal preservation)
1572.01	SB-6	6/12/20	6/5/20	soil	89.7	Adheres to Sample Acceptance Policy
1572.02	SB-7	6/12/20	6/5/20	soil	89.2	Adheres to Sample Acceptance Policy
1572.03	SB-5	6/12/20	6/5/20	soil	73.7	Adheres to Sample Acceptance Policy
1572.04	Duplicate	6/12/20	6/5/20	soil	69.9	Adheres to Sample Acceptance Policy
1572.05	SB-4S	6/12/20	6/5/20	soil	89.6	Adheres to Sample Acceptance Policy
1572.06	SB-4D	6/12/20	6/5/20	soil	85.7	Adheres to Sample Acceptance Policy
1572.07	SB-2S	6/12/20	6/5/20	soil	94.8	Adheres to Sample Acceptance Policy
1572.08	SB-2D	6/12/20	6/5/20	soil	68.6	Adheres to Sample Acceptance Policy
1572.09	SB-1	6/12/20	6/5/20	soil	76.6	Adheres to Sample Acceptance Policy
1572.1	Trip Blank	6/12/20	6/5/20	soil	100.0	Adheres to Sample Acceptance Policy
	1572.01 1572.02 1572.03 1572.04 1572.05 1572.06 1572.07 1572.08 1572.09	1572.01 SB-6 1572.02 SB-7 1572.03 SB-5 1572.04 Duplicate 1572.05 SB-4S 1572.06 SB-4D 1572.07 SB-2S 1572.08 SB-2D 1572.09 SB-1	Date Received ab ID Sample ID Received 1572.01 SB-6 6/12/20 1572.02 SB-7 6/12/20 1572.03 SB-5 6/12/20 1572.04 Duplicate 6/12/20 1572.05 SB-4S 6/12/20 1572.06 SB-4D 6/12/20 1572.07 SB-2S 6/12/20 1572.08 SB-2D 6/12/20 1572.09 SB-1 6/12/20	Date ab ID Date Received Sampled 1572.01 SB-6 6/12/20 6/5/20 1572.02 SB-7 6/12/20 6/5/20 1572.03 SB-5 6/12/20 6/5/20 1572.04 Duplicate 6/12/20 6/5/20 1572.05 SB-4S 6/12/20 6/5/20 1572.06 SB-4D 6/12/20 6/5/20 1572.07 SB-2S 6/12/20 6/5/20 1572.08 SB-2D 6/12/20 6/5/20 1572.09 SB-1 6/12/20 6/5/20	Ab ID Sample ID Date Received Received Sampled Matrix Sample Matrix 1572.01 SB-6 6/12/20 6/5/20 soil 1572.02 SB-7 6/12/20 6/5/20 soil 1572.03 SB-5 6/12/20 6/5/20 soil 1572.04 Duplicate 6/12/20 6/5/20 soil 1572.05 SB-4S 6/12/20 6/5/20 soil 1572.06 SB-4D 6/12/20 6/5/20 soil 1572.07 SB-2S 6/12/20 6/5/20 soil 1572.08 SB-2D 6/12/20 6/5/20 soil 1572.09 SB-1 6/12/20 6/5/20 soil	Ab ID Sample ID Date Received Sampled Date Matrix Weight Weight Weight Weight Weight Matrix 1572.01 SB-6 6/12/20 6/5/20 soil 89.7 1572.02 SB-7 6/12/20 6/5/20 soil 89.2 1572.03 SB-5 6/12/20 6/5/20 soil 73.7 1572.04 Duplicate 6/12/20 6/5/20 soil 69.9 1572.05 SB-4S 6/12/20 6/5/20 soil 89.6 1572.06 SB-4D 6/12/20 6/5/20 soil 85.7 1572.07 SB-2S 6/12/20 6/5/20 soil 94.8 1572.08 SB-2D 6/12/20 6/5/20 soil 68.6 1572.09 SB-1 6/12/20 6/5/20 soil 76.6

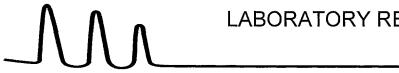
Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

- 1) EPA 600/4-79-020, 1983
- 2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 4th edition, 1992



EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:	SB-6	SB-7	SB-5	Duplicate	SB-4S	SB-4D	SB-2S
Lab Sample ID:	211572.01	211572.02	211572.03	211572.04	211572.05	211572.06	211572.07
Matrix:	soil						
Date Sampled:	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20
Date Received:	6/12/20	6/12/20	6/12/20	6/12/20	6/12/20	6/12/20	6/12/20
Units:	mg/kg						
Date of Analysis:	6/15/20	6/15/20	6/15/20	6/15/20	6/15/20	6/15/20	6/15/20
Analyst:	JAK						
Method:	8260C						
Dilution Factor:	1	1	1	1	1	1	1
Dichlorodifluoromethane	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Vinyl chloride	< 0.02	< 0.02	< 0.02	< 0.03	< 0.02	< 0.02	< 0.02
Bromomethane Chloroethane	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1
Trichlorofluoromethane	< 0.1 < 0.1	< 0.1	< 0.1				
Diethyl Ether	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Acetone	< 2	< 2	< 2	< 3	< 2	< 2	< 2
1,1-Dichloroethene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Methylene chloride	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbon disulfide	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Methyl-t-butyl ether(MTBE)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
2,2-Dichloropropane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethene 2-Butanone(MEK)	< 0.05 < 0.5	< 0.05 < 0.5	< 0.06 < 0.6	< 0.07 < 0.7	< 0.05 < 0.5	< 0.05 < 0.5	< 0.05 < 0.5
Bromochloromethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Tetrahydrofuran(THF)	< 0.5	< 0.5	< 0.6	< 0.7	< 0.5	< 0.5	< 0.5
Chloroform	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Carbon tetrachloride	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,1-Dichloropropene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Benzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	0.079	< 0.05
1,2-Dichloroethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Trichloroethene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane Dibromomethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.06 < 0.06	< 0.07 < 0.07	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Bromodichloromethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
4-Methyl-2-pentanone(MIBK)	< 0.5	< 0.5	< 0.6	< 0.7	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Toluene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
trans-1,3-Dichloropropene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
2-Hexanone	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tetrachloroethene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,3-Dichloropropane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Dibromochloromethane 1,2-Dibromoethane(EDB)	< 0.05 < 0.02	< 0.05 < 0.02	< 0.06 < 0.02	< 0.07 < 0.03	< 0.05 < 0.02	< 0.05 < 0.02	< 0.05 < 0.02
Chlorobenzene	< 0.02 < 0.05	< 0.02	< 0.02	< 0.03	< 0.02	< 0.02	< 0.02
1,1,1,2-Tetrachloroethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Ethylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	0.20	< 0.05
mp-Xylene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	0.22	< 0.05
o-X y lene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Styrene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Bromoform	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
IsoPropylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05 2

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:	SB-6	SB-7	SB-5	Duplicate	SB-4S	SB-4D	\$B-2\$
Lab Sample ID:	211572.01	211572.02	211572.03	211572.04	211572.05	211572.06	211572.07
Matrix:	soil	soil	soil	soil	soil	soil	soi
Date Sampled:	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20
Date Received:	6/12/20	6/12/20	6/12/20	6/12/20	6/12/20	6/12/20	6/12/20
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	6/15/20	6/15/20	6/15/20	6/15/20	6/15/20	6/15/20	6/15/20
Analyst:	JAK	JAK	JAK	JAK	JAK	JAK	JAK
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1	1	1	1
Bromobenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05 < 0.05	< 0.05
1,2,3-Trichloropropane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
n-Propylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	0.11	< 0.05
2-Chlorotoluene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
4-Chlorotoluene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,3,5-Trimethylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	0.39	< 0.05
tert-Butylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,2,4-Trimethylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	1.0	< 0.05
sec-Butylbenzene	< 0.05	< 0.05	0.13	< 0.07	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
p-Isopropyltoluene	< 0.05	< 0.05	0.098	< 0.07	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
n-Butylbenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,2-Dibromo-3-chloropropane	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.19	< 0.1
1,2,3-Trichlorobenzene	< 0.05	< 0.05	< 0.06	< 0.07	< 0.05	< 0.05	< 0.05
4-Bromofluorobenzene (surr)	87 %R	91 %R	121 %R	99 %R	92 %R	110 %R	91 %R
1,2-Dichlorobenzene-d4 (surr)	106 %R	107 %R	98 %R	100 %R	102 %R	96 %R	102 %R
Toluene-d8 (surr)	94 %R	96 %R	92 %R	93 %R	94 %R	94 %R	95 %R
1,2-Dichloroethane-d4 (surr)	105 %R	106 %R	103 %R	103 %R	101 %R	97 %R	101 %R

SB-6, SB-7, Duplicate, SB-4S, SB-2S: The following analytes were assessed down to the listed concentrations, 1,2-Dibromo-3-Chloropropane (0.0053mg/kg), 1,2,3-Trichloropropane (0.00311mg/kg). Detectable analytes are reported as J flags and should be considered estimated values.

SB-5, SB-4D: The following analytes were not assessed down to the listed concentrations, 1,2-Dibromo-3-Chloropropane (0.0053mg/kg), 1,2,3-Trichloropropane (0.00311mg/kg), due to sample matrix interference.

Bromomethane exhibited recovery outside acceptance limits in the Quality Control sample(s). The analyte(s) were not detected in the sample(s).

EALID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Lab Sample ID: 211572.08 211572 Matrix: soil s Date Sampled: 6/5/20 6/5 Date Received: 6/12/20 6/12 Units: mg/kg mg Date of Analysis: 6/15/20 6/16 Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 Dichlorodifluoromethane < 0.1 < Chloromethane < 0.03 < 0 Vinyl chloride < 0.03 < 0 Bromomethane < 0.1 < Chloroethane < 0.1 <	soil s /20 6/5// /20 6/12// /kg mg/ /20 6/16// AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0 0.1 < 0 0.1 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.00 < 0 0.00 < 0 0.00 < 0	2.1 soil 5/20 5/20 5/20 5/20 JAK 50C 1 0.1 0.1 0.02
Matrix: soil s Date Sampled: 6/5/20 6/5 Date Received: 6/12/20 6/12 Units: mg/kg mg Date of Analysis: 6/15/20 6/16 Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 Dichlorodifluoromethane < 0.1	soil s /20 6/5// /20 6/12// /kg mg/ /20 6/16// AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0 0.1 < 0 0.1 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.00 < 0 0.00 < 0 0.00 < 0	soil 5/20 5/20 5/kg 5/20 JAK 50C 1 0.1 0.1 0.2 0.1
Matrix: soil s Date Sampled: 6/5/20 6/5 Date Received: 6/12/20 6/12 Units: mg/kg mg Date of Analysis: 6/15/20 6/16 Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 Dichlorodifluoromethane < 0.1	soil s /20 6/5// /20 6/12// /kg mg/ /20 6/16// AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0 0.1 < 0 0.1 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.01 < 0 0.00 < 0 0.00 < 0 0.00 < 0	soil 5/20 5/20 5/kg 5/20 JAK 50C 1 0.1 0.1 0.2 0.1
Date Sampled: 6/5/20 6/5. Date Received: 6/12/20 6/12 Units: mg/kg mg Date of Analysis: 6/15/20 6/16 Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 1 Dichlorodifluoromethane < 0.1	/20 6/5// /20 6/12// /kg mg/ /20 6/16// AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0 0.1 < 0 0.1 < 0 0.01 < 0 0.00 < 0 0.1 < 0 0.1 < 0 0.00 < 0 0.1 < 0 0.1 < 0 0.00 < 0 0.1 < 0 0.00 < 0 0.1 < 0 0.00 < 0 0.00 < 0 0.00 < 0	6/20 6/20 6/kg 6/20 JAK 60C 1 0.1 0.1 0.02 0.1
Date Received: 6/12/20 6/12 Units: mg/kg mg Date of Analysis: 6/15/20 6/16 Analyst: JAK JAK Method: 8260C 826 Dilution Factor: 1 1 Dichlorodifluoromethane < 0.1	/20 6/12/. /kg mg/ /20 6/16/. AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0 0.1 < 0 0.1 < 0 0.01 < 0 0.00 < 0 0.1 < 0 0.1 < 0 0.00 < 0 0.1 < 0 0.1 < 0 0.00 < 0 0.1 < 0 0.00 < 0 0.00 < 0 0.00 < 0	2/20 3/kg 3/20 JAK 60C 1 0.1 0.1 0.02 0.1
Units: mg/kg mg Date of Analysis: 6/15/20 6/16 Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 1 Dichlorodifluoromethane < 0.1	/kg mg/ /20 6/16/ AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0. 0.1 < 0 0.1 < 0 0.1 < 0 0.1 < 0	6/kg 6/20 JAK 60C 1 0.1 0.1 0.02 0.1
Date of Analysis: 6/15/20 6/16 Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 1 Dichlorodifluoromethane < 0.1	720 6/16/ AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0. 0.1 < 0 0.1 < 0 0.1 < 0 0.1 < 0 0.1 < 0 0.1 < 0	0.1 0.02 0.1
Analyst: JAK J Method: 8260C 826 Dilution Factor: 1 2	AK J/ 60C 8260 1 0.1 < 0 0.1 < 0 0.02 < 0 0.1 < 0	0.1 0.1 0.02 0.1
Method:8260C826Dilution Factor:1Dichlorodifluoromethane< 0.1<Chloromethane< 0.1<Vinyl chloride< 0.03< 0Bromomethane< 0.1<Chloroethane< 0.1<	0.1 < 0.00 8260 1	0.1 0.1 0.1 0.02 0.1
Method:8260C826Dilution Factor:1Dichlorodifluoromethane< 0.1<Chloromethane< 0.1<Vinyl chloride< 0.03< 0Bromomethane< 0.1<Chloroethane< 0.1<	0.1 < 0.00 8260 1	0.1 0.1 0.1 0.02 0.1
Dilution Factor: Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Chloroethane Co.1 Chloroethane Co.1 Co	1 0.1 < 0 0.1 < 0 0.02 < 0. 0.1 < 0 0.1 < 0 0.1 < 0 0.06 < 0.	0.1 0.1 0.02 0.1
Dichlorodifluoromethane < 0.1 < Chloromethane < 0.1 < Vinyl chloride < 0.03 < 0	0.1 < 0 0.1 < 0 0.02 < 0. 0.1 < 0 0.1 < 0 0.1 < 0 0.06 < 0.	0.1 0.1 0.02 0.1
Chloromethane< 0.1<Vinyl chloride< 0.03	0.1 < 0 0.02 < 0 0.1 < 0 0.1 < 0 0.1 < 0 0.06 < 0	0.1).02 0.1
Vinyl chloride< 0.03< 0Bromomethane< 0.1	0.02 < 0.	0.02 0.1
Bromomethane < 0.1 < Chloroethane < 0.1 <	0.1 < 0 0.1 < 0 0.1 < 0 0.06 < 0.	0.1
Chloroethane < 0.1 <	0.1 < 0 0.1 < 0 0.06 < 0.	
	0.1 < 0 0.06 < 0.	
Trichlorothuoromothono	0.06 < 0.	
Acetone < 3	< 2	< 2
, (0010110).06 < 0.	
	0.1 < 0	0.1
Carbon disulfide < 0.1 <	0.1 < 0	0.1
Methyl-t-butyl ether(MTBE) 1.8 <		0.1
trans-1,2-Dichloroethene < 0.06 < 0).06 < 0.	
1, 1 = 14	0.06 < 0.	
ete energy et et en	0.06 < 0.	
· / ·· ·).06 < 0. 0.6 < 0	0.5 0.5
_	0.6 < 0. 0.06 < 0.	
		0.5
	0.06 < 0.	
	0.06 < 0.	
).06 < 0.	0.05
1,1-Dichloropropene < 0.06 < 0).06 < 0.	
Benzene 8.7 < 0	0.06 < 0.	
1100 - 11111111111111111111111111111111	0.06 < 0.	
).06 < 0.	
1) -).06 < 0.	
).06 < 0.	
),06	0.5
	0.6 < 0.	
).05
).05
	0.06 < 0.	
2-Hexanone < 0.1 <		0.1
Tetrachloroethene < 0.06 < 0		0.05
tie eternetelereleren		0.05
_,		0.05
		0.02
		0.05
1,1,1,= 1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).05).05
		0.05
		0.05
		0.05
		0.05
		0.05

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

	-		
Sample ID:	SB-2D	SB-1	Trip Blank
Lab Sample ID:	211572.08	211572.09	211572.1
Matrix:	soil	soil	soil
Date Sampled:	6/5/20	6/5/20	6/5/20
Date Received:	6/12/20	6/12/20	6/12/20
Units:	mg/kg	mg/kg	mg/kg
Date of Analysis:	6/15/20	6/16/20	6/16/20
Analyst:	JAK	JAK	JAK
Method:	8260C	8260C	8260C
Dilution Factor:	1	1	1
	•	·	
Bromobenzene	< 0.06	< 0.06	< 0.05
1,1,2,2-Tetrachloroethane	< 0.06	< 0.06	< 0.05
1,2,3-Trichloropropane	< 0.06	< 0.06 < 0.06	< 0.05 < 0.05
n-Propylbenzene 2-Chlorotoluene	7.3 < 0.06	< 0.06 < 0.06	< 0.05
4-Chlorotoluene	< 0.06	< 0.06	< 0.05
1,3,5-Trimethylbenzene	14	< 0.06	< 0.05
tert-Butylbenzene	< 0.06	< 0.06	< 0.05
1,2,4-Trimethylbenzene	53	< 0.06	< 0.05
sec-Butylbenzene	0.77	< 0.06	< 0.05
1,3-Dichlorobenzene	< 0.06	< 0.06	< 0.05
p-Isopropyltoluene	0.52	< 0.06	< 0.05
1,4-Dichlorobenzene	< 0.06	< 0.06	< 0.05
1,2-Dichlorobenzene	< 0.06	< 0.06	< 0.05
n-Butylbenzene	< 0.06	< 0.06	< 0.05
1,2-Dibromo-3-chloropropane	< 0.06	< 0.06	< 0.05
1,2,4-Trichlorobenzene Hexachlorobutadiene	< 0.06	< 0.06	< 0.05
Naphthalene	< 0.06 7.6	< 0.06 < 0.1	< 0.05 < 0.1
1,2,3-Trichlorobenzene	< 0.06	< 0.06	< 0.05
4-Bromofluorobenzene (surr)	120 %R	87 %R	87 %R
1,2-Dichlorobenzene-d4 (surr)	100 %R	104 %R	104 %R
Toluene-d8 (surr)	99 %R	94 %R	95 %R
1,2-Dichloroethane-d4 (surr)	81 %R	101 %R	101 %R

Deviations from the Report:

SB-2D Parameter: Toluene, Ethylbenzene, mp-Xylene, o-Xylene, 1,2,4-Trimethylbenzene Date of Analysis: 6/16/2020 Dilution Factor: 13

SB-1, Trip Blank: The following analytes were assessed down to the listed concentrations, 1,2-Dibromo-3-Chloropropane (0.0053mg/kg), 1,2,3-Trichloropropane (0.00311mg/kg). Detectable analytes are reported as J flags and should be considered estimated values.

SB-2D: The following analytes were not assessed down to the listed concentrations, 1,2-Dibromo-3-Chloropropane (0.0053mg/kg), 1,2,3-Trichloropropane (0.00311mg/kg), due to sample matrix interference.

Bromomethane exhibited recovery outside acceptance limits in the Quality Control sample(s). The analyte(s) were not detected in the sample(s).

SB-2D: Isopropylbenzene exhibited recovery outside acceptance limits in the Quality Control sample(s).

EAI ID#: 211572

Batch ID: 637278-11730/S061520vVT821 Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Dichlorodifluoromethane	< 0.1	1.5 (148 %R)	1.5 (150 %R) (1 RPD)	6/15/2020	mg/kg	40 - 160	20	8260C
Chloromethane	< 0.1	1.5 (153 %R)	1.5 (151 %R) (1 RPD)	6/15/2020	mg/kg	40 - 160	20	8260C
Vinyl chloride	< 0.02	1.1 (109 %R)	1.2 (116 %R) (6 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Bromomethane	< 0.1	1.4 (137 %R)	1.5 (147 %R) (7 RPD)	6/15/2020	mg/kg	40 - 160	20	8260C
Chloroethane	< 0.1	1.2 (119 %R)	1.2 (121 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Trichlorofluoromethane	< 0.1	1.2 (121 %R)	1.2 (122 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Diethyl Ether	< 0.05	1.1 (113 %R)	1.1 (113 %R) (0 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Acetone	< 2	< 2 (126 %R)	< 2 (125 %R) (1 RPD)	6/15/2020	mg/kg	40 - 160	20	8260C
1,1-Dichloroethene	< 0.05	1.1 (112 %R)	1.1 (113 %R) (0 RPD)) 6/15/2020	mg/kg	59 - 172	20	8260C
Methylene chloride	< 0.1	0.93 (93 %R)	0.95 (95 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C
Carbon disulfide	< 0.1	1.1 (109 %R)	1.1 (109 %R) (0 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Methyl-t-butyl ether(MTBE)	< 0.1	1.1 (113 %R)	1.1 (114 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C
trans-1,2-Dichloroethene	< 0.05	1.1 (112 %R)	1.1 (113 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C
1,1-Dichloroethane	< 0.05	1.1 (114 %R)	1.1 (115 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C
2,2-Dichloropropane	< 0.05	* 1.5 (146 %R)	* 1.5 (147 %R) (0 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
cis-1,2-Dichloroethene	< 0.05	1.2 (122 %R)	1.2 (123 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
2-Butanone(MEK)	< 0.5	1.0 (105 %R)	1.1 (105 %R) (0 RPD)	6/15/2020	mg/kg	40 - 160	20	8260C
Bromochloromethane	< 0.05	1.1 (109 %R)	1.1 (110 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Tetrahydrofuran(THF)	< 0.5	1.1 (111 %R)	1.1 (112 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Chloroform	< 0.05	1.1 (109 %R)	1.1 (110 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,1,1-Trichloroethane	< 0.05	1.3 (128 %R)	1.3 (129 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Carbon tetrachloride	< 0.05	1.2 (120 %R)	1.2 (121 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C
1,1-Dichloropropene	< 0.05	1.2 (124 %R)	1.3 (126 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Benzene	< 0.05	1.1 (109 %R)	1.1 (109 %R) (0 RPD)) 6/15/2020	mg/kg	66 - 142	20	8260C
1,2-Dichloroethane	< 0.05	1.1 (108 %R)	1.1 (108 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C
Trichloroethene	< 0.05	1.2 (119 %R)	1.2 (121 %R) (1 RPD)) 6/15/2020	mg/kg	62 - 137	20	8260C
1,2-Dichloropropane	< 0.05	1.1 (114 %R)	1.1 (114 %R) (0 RPD)		mg/kg	70 - 130	20	8260C
Dibromomethane	< 0.05	1.0 (102 %R)	1.0 (103 %R) (1 RPD)		mg/kg	70 - 130	20	8260C
Bromodichloromethane	< 0.05	1.1 (114 %R)	1.1 (115 %R) (1 RPD)		mg/kg	70 - 130		8260C
4-Methyl-2-pentanone(MIBK)	< 0.5	1.1 (109 %R)	1.1 (110 %R) (2 RPD)		mg/kg	40 - 160		8260C
cis-1,3-Dichloropropene	< 0.05	1.2 (122 %R)	1.2 (124 %R) (2 RPD)		mg/kg	70 - 130		8260C
Toluene	< 0.05	1.1 (111 %R)	1.1 (110 %R) (0 RPD)		mg/kg	59 - 139		8260C
trans-1,3-Dichloropropene	< 0.05	1.2 (116 %R)	1.2 (117 %R) (1 RPD)		mg/kg	70 - 130		8260C
1,1,2-Trichloroethane	< 0.05	1.1 (106 %R)	1.1 (105 %R) (1 RPD)		mg/kg	70 - 130		8260C
2-Hexanone	< 0.1	0.93 (93 %R)	0.93 (93 %R) (0 RPD)		mg/kg	40 - 160		8260C
Tetrachloroethene	< 0.05	1.1 (114 %R)	1.1 (114 %R) (0 RPD)		mg/kg	70 - 130		8260C
1,3-Dichloropropane	< 0.05	0.99 (99 %R)	0.98 (98 %R) (1 RPD)		mg/kg	70 - 130		8260C
Dibromochloromethane	< 0.05	1.0 (101 %R)	1.0 (102 %R) (0 RPD)		mg/kg	70 - 130		8260C
1,2-Dibromoethane(EDB)	< 0.02	1.1 (107 %R)	1.0 (104 %R) (3 RPD)		mg/kg	70 - 130		8260C
Chlorobenzene	< 0.05	1.1 (111 %R)	1.1 (111 %R) (0 RPD)		mg/kg	60 - 133		8260C
1,1,1,2-Tetrachloroethane	< 0.05	1.1 (106 %R)	1.1 (106 %R) (0 RPD)		mg/kg	70 - 130		8260C
Ethylbenzene	< 0.05	1.2 (124 %R)	1.2 (124 %R) (0 RPD)		mg/kg	70 - 130		8260C
mp-Xylene	< 0.05	2.5 (127 %R)	2.5 (126 %R) (0 RPD)		mg/kg	70 - 130		8260C
o-Xylene	< 0.05	1.2 (121 %R)	1.2 (121 %R) (0 RPD)		mg/kg	70 - 130		8260C
Styrene	< 0.05	1.3 (125 %R)	1.3 (125 %R) (0 RPD)		mg/kg	70 - 130		8260C
Bromoform	< 0.05	0.98 (98 %R)	1.0 (100 %R) (1 RPD)) 6/15/2020	mg/kg	70 - 130	20	8260C

QC REPORT

Client: LE Environmental LLC

EAI ID#: 211572

Batch ID: 637278-11730/S061520vVT821

Client Designation: 1705 Route 128 | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
IsoPropylbenzene	< 0.05	* 1.4 (141 %R)	* 1.4 (141 %R) (0 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Bromobenzene	< 0.05	0.95 (95 %R)	0.97 (97 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,1,2,2-Tetrachloroethane	< 0.05	0.92 (92 %R)	0.93 (93 %R) (1 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,2,3-Trichloropropane	< 0.05	0.93 (93 %R)	0.95 (95 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
n-Propylbenzene	< 0.05	1.2 (116 %R)	1.2 (118 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
2-Chlorotoluene	< 0.05	1.1 (111 %R)	1.1 (114 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
4-Chlorotoluene	< 0.05	1.0 (103 %R)	1.1 (106 %R) (3 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,3,5-Trimethylbenzene	< 0.05	1.2 (118 %R)	1.2 (121 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
tert-Butylbenzene	< 0.05	1.1 (114 %R)	1.2 (116 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,2,4-Trimethylbenzene	< 0.05	1.2 (118 %R)	1.2 (120 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
sec-Butylbenzene	< 0.05	1.2 (119 %R)	1.2 (121 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,3-Dichlorobenzene	< 0.05	1.0 (104 %R)	1.1 (106 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
p-Isopropyltoluene	< 0.05	1.2 (121 %R)	1.2 (123 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,4-Dichlorobenzene	< 0.05	0.98 (98 %R)	1.0 (100 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,2-Dichlorobenzene	< 0.05	0.99 (99 %R)	1.0 (101 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
n-Butylbenzene	< 0.05	1.1 (113 %R)	1.1 (115 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,2-Dibromo-3-chloropropane	< 0.05	0.82 (82 %R)	0.83 (83 %R) (2 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,2,4-Trichlorobenzene	< 0.05	0.93 (93 %R)	0.97 (97 %R) (4 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Hexachlorobutadiene	< 0.05	0.92 (92 %R)	0.94 (94 %R) (3 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
Naphthalene	< 0.1	0.85 (85 %R)	0.90 (90 %R) (5 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
1,2,3-Trichlorobenzene	< 0.05	0.90 (90 %R)	0.93 (93 %R) (4 RPD)	6/15/2020	mg/kg	70 - 130	20	8260C
4-Bromofluorobenzene (surr)	87 %R	104 %R	102 %R	6/15/2020	% Rec	70 - 130	20	8260C
1,2-Dichlorobenzene-d4 (surr)	105 %R	99 %R	98 %R	6/15/2020	% Rec	70 - 130	20	8260C
Toluene-d8 (surr)	95 %R	98 %R	97 %R	6/15/2020	% Rec	70 - 130	20	8260C
1,2-Dichloroethane-d4 (surr)	106 %R	98 %R	98 %R	6/15/2020	% Rec	70 - 130	20	8260C

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/!Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Client Sample ID:	SB-6				
ab Sample ID:	211572.01				
latrix:	soil				
ate Sampled:	6/5/20				
ate Received:	6/12/20				
ate Prepared:	6/15/20				
nits	mg/kg				
ethod	8270D				
nalyst	JMR				
	Results	Dilution Factor	Date Analyzed	TEF	TEQ
phthalene	0.045	1	6/15/20		
/lethylnaphthalene	0.019	1	6/15/20		
lethylnaphthalene	0.017	1	6/15/20		
enaphthylene	0.37	1	6/15/20		
naphthene	0.021	1	6/15/20		
orene	0.11	1	6/15/20		
nanthrene	1.0	1	6/15/20		
hracene	0.26	1	6/15/20		
oranthene	2.2	1	6/15/20		
ene	2.2	1	6/15/20		
zo[a]anthracene	1.4	1	6/15/20	0.1	.14
ysene .	1.4	1	6/15/20	0.001	.0014
nzo[b]fluoranthene	2.2	1	6/15/20	0.1	.22
zo[k]fluoranthene	0.76	1	6/15/20	0.01	.0076
zo[a]pyrene	1.9	1	6/15/20	1	1.9
eno[1,2,3-cd]pyrene	1.0	1	6/15/20	0.1	.1
enz[a,h]anthracene	0.24	1	6/15/20	1	.24
nzo[g,h,i]perylene	0.84	. 1	6/15/20		
erphenyl-D14 (surr)	61 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Client Sample ID:	SB-7					
ab Sample ID:	211572.02					
Matrix:	soil					
Date Sampled:	6/5/20					
Date Received:	6/12/20					
Date Prepared:	6/15/20					
Jnits	mg/kg					
Method	8270D					
Analyst	JMR					
		Dilution				
	Results	Factor	Date Analyzed	TEF	TEQ	
aphthalene	0.024	1	6/15/20			
-Methylnaphthalene	0.0092	1	6/15/20			
-Methylnaphthalene	< 0.008	1	6/15/20			
cenaphthylene	0.23	1	6/15/20			
cenaphthene	0.011	1	6/15/20			
luorene	0.051	1	6/15/20			
henanthrene	0.47	1	6/15/20			
nthracene	0.12	1	6/15/20			
luoranthene	1.4	1	6/15/20			
yrene	1.5	1	6/15/20			
enzo[a]anthracene	0.97	1	6/15/20	0.1	.097	
hrysene	1.0	1	6/15/20	0.001	.001	
enzo[b]fluoranthene	1.5	1	6/15/20	0.1	.15	
enzo[k]fluoranthene	0.56	1	6/15/20	0.01	.0056	
enzo[a]pyrene	1.3	1	6/15/20	1	1.3	
ndeno[1,2,3-cd]pyrene	0.74	1	6/15/20	0.1	.074	
ibenz[a,h]anthracene	0.16	1	6/15/20	1	.16	
enzo[g,h,i]perylene	0.62	1	6/15/20			
-Terphenyl-D14 (surr)	62 %R		6/15/20			

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

lient Sample ID:	SB-5				
ab Sample ID:	211572.03				
atrix:	soil				
ite Sampled:	6/5/20				
te Received:	6/12/20				
ite Prepared:	6/15/20				
nits	mg/kg				
ethod	8270D				
alyst	JMR				
		Dilution	Data Assalassa	766	TEO
	Results	Factor	Date Analyzed	TEF	TEQ
hthalene	< 0.009	1	6/15/20		
ethylnaphthalene	< 0.009	1	6/15/20		
ethylnaphthalene	< 0.009	1	6/15/20		
enaphthylene	< 0.009	1	6/15/20		
enaphthene ·	< 0.009	1	6/15/20		
orene	< 0.009	1	6/15/20		
nanthrene	< 0.009	1	6/15/20		
hracene	< 0.009	1	6/15/20		
oranthene	0.0090	1	6/15/20		
ene	< 0.009	1	6/15/20		
zo[a]anthracene	< 0.009	1	6/15/20	0.1	< .0009
ys e ne	< 0.009	1	6/15/20	0.001	< .00000
zo[b]fluoranthene	< 0.009	1	6/15/20	0.1	< .0009
zo[k]fluoranthene	< 0.009	1	6/15/20	0.01	< .00009
zo[a]pyrene	< 0.009	1	6/15/20	1	< .009
no[1,2,3-cd]pyrene	< 0.009	1	6/15/20	0.1	< .0009
nz[a,h]anthracene	< 0.009	1	6/15/20	1	< .009
zo[g,h,i]perylene	< 0.009	1	6/15/20		
erphenyl-D14 (surr)	58 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:						
trix: te Sampled: 6/5/20 te Received: 6/12/20 te Prepared: 6/15/20 sits mg/kg tehod alyst JMR Results Factor Results Factor Date Analyzed TEF TEG	Client Sample ID:	Duplicate				
te Sampled: 6/5/20 te Received: 6/12/20 te Prepared: 6/15/20 tits mg/kg tethod 8270D allyst JMR Dilution Results Factor Date Analyzed TEF TEC onthalene < 0.01 1 6/15/20 tethylnaphthalene < 0.	Lab Sample ID:	211572.04				
te Received: te Prepared: 6/15/20 tits mg/kg tethod 8270D allyst JMR Tethod Results Factor Date Analyzed TEF TEC conthalene < 0.01 1 6/15/20 tethylnaphthalene < 0.01 1 6/15/20 0.1 < .00 tethylnaphthalene < 0.01 1 6/15/20 1 < .00 tethylnapht	Matrix:	soil				
te Prepared: 6/15/20	Date Sampled:	6/5/20				
September Sept	Date Received:	6/12/20				
## 270D ## 270	Date Prepared:	6/15/20				
JMR	Units	mg/kg				
Dilution Results Factor Date Analyzed TEF TEG Oththalene	Method	8270D				
Results Factor Date Analyzed TEF TEGO TE	Analyst	JMR	5			
dethylnaphthalene		Results		Date Analyzed	TEF	TEQ
dethylnaphthalene	laphthalene	< 0.01	1	•		
dethylinaphthalene	-Methylnaphthalene		1			
Semaphthylene Country	Methylnaphthalene	< 0.01	1	6/15/20		
Semaphthene Country	cenaphthylene	< 0.01	1	6/15/20		
orene < 0.01	cenaphthene	< 0.01	1	6/15/20		
hracene < 0.01 1 6/15/20 pranthene	luorene	< 0.01	1	6/15/20		
branthene 0.011 1 6/15/20 ene < 0.01	henanthrene	< 0.01	1	6/15/20		
ene < 0.01	nthracene	< 0.01	1	6/15/20		
Sizo	uoranthene	0.011	1	6/15/20		
ysene	yrene	< 0.01	1	6/15/20		
	enzo[a]anthracene	< 0.01	1	6/15/20	0.1	< .001
nzo[k]fluoranthene < 0.01	Chrysene	< 0.01	1	6/15/20	0.001	< .00001
1 1 1 1 1 1 1 1 1 1	enzo[b]fluoranthene	< 0.01	1	6/15/20		< .001
eno[1,2,3-cd]pyrene	enzo[k]fluoranthene	< 0.01	1			< .0001
enz[a,h]anthracene < 0.01 1 6/15/20 1 < .0 enzo[g,h,i]perylene < 0.01 1 6/15/20	enzo[a]pyrene		1			< .01
nzo[g,h,i]perylene < 0.01 1 6/15/20	deno[1,2,3-cd]pyrene		1			< .001
	ibenz[a,h]anthracene		1		1	< .01
erphenyl-D14 (surr) 57 %R 6/15/20	enzo[g,h,i]perylene		1			
	o-Terphenyl-D14 (surr)	57 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

			······································		
Client Sample ID:	SB-4S				
ab Sample ID:	211572.05				
Natrix:	soil				
Date Sampled:	6/5/20				
Pate Received:	6/12/20				
ate Prepared:	6/15/20				
nits	mg/kg				
lethod	8270D				
nalyst	JMR				
	JIVIIX	Dilution			
	Results	Factor	Date Analyzed	TEF	TEQ
aphthalene	< 0.008	1	6/15/20		
Meth y inaphthalene	< 0.008	1	6/15/20		
Methylnaphthalene	< 0.008	1	6/15/20		
enaphthylene	0.017	1	6/15/20		
enaphthene	< 0.008	1	6/15/20		
orene	< 0.008	1	6/15/20		
enanthrene	0.049	1	6/15/20		
hracene	0.011	1	6/15/20		
oranthene	0.10	1	6/15/20		
rene	0.10	1	6/15/20		
nzo[a]anthracene	0.052	1	6/15/20	0.1	.0052
rysene	0.058	1	6/15/20	0.001	.000058
nzo[b]fluoranthene	0.084	1	6/15/20	0.1	.0084
nzo[k]fluoranthene	0.027	1	6/15/20	0.01	.00027
nzo[a]pyrene	0.065	1	6/15/20	1	.065
eno[1,2,3-cd]pyrene	0.048	1	6/15/20	0.1	.0048
enz[a,h]anthracene	0.0094	1	6/15/20	1	.0094
nzo[g,h,i]perylene	0.045	1	6/15/20		
Terphenyl-D14 (surr)	62 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAIID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Client Sample ID:	SB-4D				
Lab Sample ID:	211572.06				
flatrix:	soil				
Date Sampled:	6/5/20				
Date Received:	6/12/20				
ate Prepared:	6/15/20				
Inits	mg/kg				
lethod	8270D				
nalyst	JMR				
		Dilution			
	Results	Factor	Date Analyzed	TEF	TEQ
aphthalene	0.012	1	6/15/20		
Methylnaphthalene	0.0094	1	6/15/20		
Methylnaphthalene	0.0094	1	6/15/20		
enaphthylene	0.038	1	6/15/20		
enaphthene	< 0.008	1	6/15/20		
orene	< 0.008	1	6/15/20		
enanthrene	0.013	1	6/15/20		
thracene	0.012	1	6/15/20		
oranthene	0.082	1	6/15/20		
rene	0.12	1	6/15/20		
nzo[a]anthracene	0.033	1	6/15/20	0.1	.0033
rysene	0.039	1	6/15/20	0.001	.000039
nzo[b]fluoranthene	0.15	1	6/15/20	0.1	.015
nzo[k]fluoranthene	0.051	1	6/15/20	0.01	.00051
zo[a]pyrene	0.12	1	6/15/20	1	.12
eno[1,2,3-cd]pyrene	0.090	1	6/15/20	0.1	.009
enz[a,h]anthracene	0.019	1	6/15/20	1	.019
nzo[g,h,i]perylene	0.087	1	6/15/20		
Ferphenyl-D14 (surr)	55 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

of Compile ID.
nt Sample ID: SB-2S
Sample ID: 211572.07
ix: soil
e Sampled: 6/5/20
Received: 6/12/20
e Prepared: 6/15/20
ts mg/kg
hod 8270D
lyst .IMR
Dilution Results Factor Date Analyzed TEF TEQ
nthalene 0.012 1 6/15/20
thylnaphthalene 0.0082 1 6/15/20
thylnaphthalene < 0.007 1 6/15/20
paphthylene 0.044 1 6/15/20
aphthene < 0.007 1 6/15/20
rene < 0.007 1 6/15/20
nanthrene 0.10 1 6/15/20
racene 0.031 1 6/15/20
ranthene 0.28 1 6/15/20
ne 0.26 1 6/15/20
to[a]anthracene 0.15 1 6/15/20 0.1 .015
sene 0.16 1 6/15/20 0.001 .00016
co[b]fluoranthene
co[k]fluoranthene
co[a]pyrene
no[1,2,3-cd]pyrene 0.097 1 6/15/20 0.1 .0097
nz[a,h]anthracene
to[g,h,i]perylene
rphenyl-D14 (surr) 67 %R 6/15/20

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

			 		
Client Sample ID:	SB-2D				
Lab Sample ID:	211572.08				
Matrix:	soil				
Date Sampled:	6/5/20				
Date Received:	6/12/20				
Date Prepared:	6/15/20				
Units	mg/kg				
Method	8270D				
Analyst	JMR	5 11 d			
	Results	Dilution Factor	Date Analyzed	TEF	TEQ
Naphthalene	0.018	1	6/15/20		
2-Meth y lnaphthalene	0.013	1	6/15/20		
-Methylnaphthalene	< 0.01	1	6/15/20		
Acenaphthylene	< 0.01	1	6/15/20		
Acenaphthene	< 0.01	1	6/15/20		
Fluorene	< 0.01	1	6/15/20		
Phenanthrene	< 0.01	1	6/15/20		
Anthracene	< 0.01	1	6/15/20		
Fluoranthene	< 0.01	1	6/15/20		
^D yrene	< 0.01	1	6/15/20		
Benzo[a]anthracene	< 0.01	1	6/15/20	0.1	< .001
Chrysene	< 0.01	1	6/15/20	0.001	< .00001
Benzo[b]fluoranthene	< 0.01	1	6/15/20	0.1	< .001
Benzo[k]fluoranthene	< 0.01	1	6/15/20	0.01	< .0001
Benzo[a]pyrene	< 0.01	1	6/15/20	1	< .01
ndeno[1,2,3-cd]pyrene	< 0.01	1	6/15/20	0.1	< .001
Dibenz[a,h]anthracene	< 0.01	1	6/15/20	1	< .01
Benzo[g,h,i]perylene	< 0.01	1	6/15/20		
p-Terphenyl-D14 (surr)	62 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Client Sample ID:	SB-1				
ab Sample ID:	211572.09				
latrix:	soil				
ate Sampled:	6/5/20				
ate Received:	6/12/20				
ate Prepared:	6/15/20				
nits	mg/kg				
ethod	8270D				
nalyst	JMR	- 11 (1			
	Results	Dilution Factor	Date Analyzed	TEF	TEQ
ohthalene	< 0.009	1	6/15/20		
ethylnaphthalene	< 0.009	1	6/15/20		
ethylnaphthalene	< 0.009	1	6/15/20		
naphthylene	< 0.009	1	6/15/20		
enaphthene	< 0.009	1	6/15/20		
orene	< 0.009	1	6/15/20		
nanthrene	< 0.009	1	6/15/20		
hracene	< 0.009	1	6/15/20		
oranthene	< 0.009	1	6/15/20		
ene	< 0.009	1	6/15/20		
nzo[a]anthracene	< 0.009	1	6/15/20	0.1	< .0009
ysene	< 0.009	1	6/15/20	0.001	< .00000
zo[b]fluoranthene	< 0.009	1	6/15/20	0.1	< .0009
zo[k]fluoranthene	< 0.009	1	6/15/20	0.01	< .00009
zo[a]pyrene	< 0.009	1	6/15/20	1	< .009
no[1,2,3-cd]pyrene	< 0.009	1	6/15/20	0.1	< .0009
enz[a,h]anthracene	< 0.009	1	6/15/20	1	< .009
zo[g,h,i]perylene	< 0.009	1	6/15/20		
erphenyl-D14 (surr)	62 %R		6/15/20		

TEF: Toxicity Equivalent Factor

TEQ: Toxicity Equivalence to Benzo[a]pyrene

EAI ID#: 211572 Batch ID: 637278-04821/S061520PAH1

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Naphthalene	< 0.007	1.1 (69 %R)	1.1 (67 %R) (2 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
2-Methylnaphthalene	< 0.007	1.2 (73 %R)	1.2 (73 %R) (0 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
1-Methylnaphthalene	< 0.007	1.2 (69 %R)	1.1 (69 %R) (0 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Acenaphthylene	< 0.007	1.2 (73 %R)	1.2 (71 %R) (3 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Acenaphthene	< 0.007	1.2 (73 %R)	1.2 (71 %R) (2 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Fluorene	< 0.007	1.3 (75 %R)	1.2 (74 %R) (2 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Phenanthrene	< 0.007	1.2 (75 %R)	1.3 (75 %R) (1 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Anthracene	< 0.007	1.2 (74 %R)	1.3 (75 %R) (2 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Fluoranthene	< 0.007	1.3 (75 %R)	1.3 (76 %R) (0 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Pyrene	< 0.007	1.2 (74 %R)	1.3 (76 %R) (3 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Benzo[a]anthracene	< 0.007	1.3 (77 %R)	1.3 (78 %R) (1 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Chrysene	< 0.007	1.3 (77 %R)	1.3 (78 %R) (1 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Benzo[b]fluoranthene	< 0.007	1.3 (79 %R)	1.3 (80 %R) (1 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Benzo[k]fluoranthene	< 0.007	1.2 (74 %R)	1.3 (78 %R) (5 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Benzo[a]pyrene	< 0.007	1.3 (79 %R)	1.3 (80 %R) (2 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Indeno[1,2,3-cd]pyrene	< 0.007	1.3 (79 %R)	1.3 (80 %R) (1 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
Dibenz[a,h]anthracene	< 0.007	1.3 (77 %R)	1.3 (78 %R) (1 RPD		mg/kg	40 - 140	30	8270D
Benzo[g,h,i]perylene	< 0.007	1.3 (77 %R)	1.3 (78 %R) (1 RPD) 6/15/2020	mg/kg	40 - 140	30	8270D
p-Terphenyl-D14 (surr)	73 %R	76 %R	77 %F	R 6/15/2020	mg/kg	30 - 130)	8270D.

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EALID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

SB-6 SB-7 SB-5 Duplicate SB-4S SB-4D SB-2S Sample ID: Lab Sample ID: 211572.01 211572.02 211572.04 211572.03 211572.05 211572.06 211572.07 Matrix: soil soil soil soil soil soil soil Date Sampled: 6/5/20 6/5/20 6/5/20 6/5/20 6/5/20 6/5/20 6/5/20 Date Received: 6/12/20 6/12/20 6/12/20 6/12/20 6/12/20 6/12/20 6/12/20 % Solid: 89.7 89.2 73.7 69.9 89.6 85.7 94.8 Units: mg/kg mg/kg mg/kg mg/kg ∽ mg/kg mg/kg mg/kg Date of Extraction/Prep: 6/15/20 6/15/20 6/15/20 6/15/20 6/15/20 6/15/20 6/15/20 Date of Analysis: 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 Analyst: MA MΑ MA MΑ MA MA MA **Extraction Method:** 3540C 3540C 3540C 3540C 3540C 3540C 3540C Analysis Method: 8082A 8082A 8082A 8082A 8082A 8082A 8082A **Dilution Factor:** PCB-1016 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1221 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1232 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1242 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1248 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1254 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1260 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1262 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 PCB-1268 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 TMX (surr) 71 %R 77 %R 87 %R 82 %R 90 %R 93 %R 86 %R DCB (surr) 60 %R 57 %R 69 %R 75 %R 70 %R 51 %R 51 %R

Acid clean-up was performed on the samples and associated batch QC.

M

LABORATORY REPORT

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

SB-1

Lab Sample ID:	211572.09
Matrix:	soil
Date Sampled:	6/5/20
Date Received:	6/12/20
% Solid:	76.6
Units:	mg/kg
Date of Extraction/Prep:	6/15/20
Date of Analysis:	6/16/20
Analyst:	MA
Extraction Method:	3540C
Analysis Method:	8082A
Dilution Factor:	1
PCB-1016	< 0.02
PCB-1221	< 0.02
PCB-1232	< 0.02
PCB-1242	< 0.02
PCB-1248	< 0.02
PCB-1254	< 0.02
PCB-1260	< 0.02
PCB-1262	< 0.02

Acid clean-up was performed on the samples and associated batch QC.

< 0.02

86 %R

65 %R

PCB-1268

TMX (surr)

DCB (surr)

EAI ID#: 211572

Batch ID: 637278-11645/S061520PCB1

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
PCB-1016	< 0.02	0.14 (103 %R)	0.13 (99 %R) (4 RPD)	6/16/2020	mg/kg	40 - 140	30	8082A
PCB-1221	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
PCB-1232	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
PCB-1242	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
PCB-1248	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
PCB-1254	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
PCB-1260	< 0.02	0.13 (94 %R)	0.12 (90 %R) (5 RPD)	6/16/2020	mg/kg	40 - 140	30	8082A
PCB-1262	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
PCB-1268	< 0.02	< 0.02 (%R N/A)	< 0.02 (%R N/A) (RPD N/A)	6/16/2020	mg/kg			8082A
TMX (surr)	92 %R	90 %R	89 %R	R 6/16/2020	% Rec	30 - 150	30	8082A
DCB (surr)	100 %R	95 %R	93 %R	6/16/2020	% Rec	30 - 150	30	8082A

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/! Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:	SB-6	SB-7	SB-5	Duplicate					
Lab Sample ID: Matrix: Date Sampled: Date Received:	211572.01 soil 6/5/20 6/12/20	211572.02 soil 6/5/20 6/12/20	211572.03 soil 6/5/20 6/12/20	211572.04 soil 6/5/20 6/12/20	Analytical Matrix	Units	Date of Analysis	Method	Analyst
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	5.4 82 < 0.5 23 24 < 0.1 < 0.5 < 0.5	4.0 56 < 0.5 15 26 < 0.1 < 0.5 < 0.5	6.4 140 < 0.5 35 14 < 0.1 < 0.5 < 0.5	6.9 140 < 0.5 39 18 < 0.1 < 0.5 < 0.5	SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry		6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20	6020 6020 6020 6020 6020 6020 6020	DS DS DS DS DS DS
Sample ID:	SB-4S	SB-4D	SB-2S	SB-2D					
Lab Sample ID: Matrix: Date Sampled: Date Received:	211572.05 soil 6/5/20 6/12/20	211572.06 soil 6/5/20 6/12/20	211572.07 soil 6/5/20 6/12/20	211572.08 soil 6/5/20 6/12/20	Analytical Matrix	Units	Date of Analysis	Method	Analyst
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	6.0 43 65 36 45 < 0.1 < 0.5 < 0.5	2.7 21 < 0.5 11 15 < 0.1 < 0.5 < 0.5	3.1 65 2.0 23 150 < 0.1 < 0.5 < 0.5	8.6 140 < 0.5 39 16 < 0.1 < 0.5 < 0.5	SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry SolTotDry	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20 6/16/20	6020 6020 6020 6020 6020 6020 6020	DS DS DS DS DS DS DS DS

EAI ID#: 211572

Client: LE Environmental LLC

Client Designation: 1705 Route 128 | 19-138

Sample ID:

Silver

SB-1

< 0.5

Lab Sample ID:	211572.09
Matrix:	soil
Date Sampled:	6/5/20
Date Received:	6/12/20
Arsenic	4.1
Barium	110
Cadmium	< 0.5
Chromium	34
Lead	12
Mercury	< 0.1
Selenium	< 0.5

Analytical Matrix	Units	Date of Analysis	Method A	nalyst
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS
SolTotDry	mg/kg	6/16/20	6020	DS

QC REPORT

EALID#: 211572

Client: LE Environmental LLC

1705 Route 128 | 19-138 Client Designation:

				Date of			
Parameter Name	Blank	LCS	LCSD	Units Analysis	Limits	RPD	Method
Arsenic	< 0.5	38 (95 %R)	N/A	mg/kg 6/16/20	80 - 120	20	6020
Barium	< 0.5	39 (98 %R)	NA	mg/kg 6/16/20	80 - 120	20	6020
Cadmium	< 0.5	38 (95 %R)	NA NA	mg/kg 6/16/20	80 - 120	20	6020
Chromium	< 0.5	39 (97 %R)	NA	mg/kg 6/16/20	80 - 120	20	6020
Lead	< 0.5	36 (91 %R)	NA	mg/kg 6/16/20	80 - 120	20	6020
Mercury	< 0.1	0.38 (94 %R)	ŅA	mg/kg 6/16/20	80 - 120	20	6020
Selenium	< 0.5	38 (95 %R)	NA NA	mg/kg 6/16/20	80 - 120	20	6020
Silver	< 0.5	38 (94 %R)	NA	mg/kg 6/16/20	80 - 120	20	6020

Samples were analyzed within holding times unless noted on the sample results page.

Instrumentation was calibrated in accordance with the method requirements. The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

^{*/!} Flagged analyte recoveries deviated from the QA/QC limits.

CHAIN-OF-CUSTODY RECORD

21157;

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

^~ 0	SUSPECTED CONTAMINATION: Petvalean 10.	RECEIVED BY:			DATE:		RELINQUISHED BY:	FINOUIS	77 78 m m			P0 #:	NOTE #:
Auto Garage	SITE HISTORY: Formu Gas Station / Anti Garage	home	2	13.5c	6-12-20	Joseph .	hompa	4				D OR OTHER:	EGULATORY PROGRAM: NPDES: RGP POIW STORMWATER OR GWP. OIL FUND. BROWNFIELD OR OTHER:
		RECEIPED IN THE BOTH	12.4	IME:	DATE:	Moson By:	My la mon		RC C			OTHER:	ATE: NH MA ME (VT)
				3	twens on	yel a	NZ TE	SAMPLER(S):	SAM				19-138
)			ר _	->	^		<u> </u>			12.8	# 1705 Rou
		EXCEL	Equis	E-MAIL PDF	Ţ	U	MA MCP	3				eenvinet	-MAIL: DAKE OF OF LEANY
6 INFO, IF DIFFERENT	NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT		OPTIONS	ELECTRONIC OPTIONS			OR.		-		EXT.:		HONE: 802-9179-4228
YES NO	SAMPLES FIELD FILTERED?				-	C	ធ	≻		IP: 05676	P: 05	STATE: VT	'
-	OTHER METALS:	6	©PTIONS	REPORTING OPTIONS PRELIMS: YES OR NO	P	po	QA/QC Reporting Level	QA/QC REPORTIN	78			Un: + # 1	DOMPANY: LE ENVIVONDMENTAL
Fe, MN PB, CU	METALS: (8 RCRA) 13 PP F	TEMP. 3, 8 °C		TAT	Normal	I .	DATE NEEDED:	2 2				7	स्त्र
			_					_	-			IaOH; M-MEOH	RESERVATIVE: H-HCL; N-HNO3; S-H2SO4; Na-NaOH; M-MEOH
		•									6 WATE	W-SURFACE WATER; DW-DRINKI	9atrix: A-Air; S-Soil; GW-Ground Water; SW-Surface Water; DW-Drinking Water; Wyk-Waste water
									*			,	
506 ay	W		×		1	V		~	X	7	S	6/5/20 1300	SB-1
50623	W			~					×		5	1235	SB-2D
50619	W		×	\		Y	$\overline{}$	~	×		S) (A)	1215	25
50769	W				-	X			X		5	W5/20 1110	
50621	W		*		- 1	×		V	X		5	0011 0	
50622	W		×			V		_	X		SG	. 1010	Duplicate
26905	w			~~		×		V	×				513-5
50626	-4			- X		×		~	\times		56	lilas ogas	
50629	£				1	<u></u>			X		S	65/ab: 0900	SB-6
MEOH VIAL #	REACTIVE CYANIDE FLASHPOINT I TOTAL COLIFORM FECAL COLIFORM ENTEROCOCCI HETEROTROPHIC F	pH T. Res. (COD PHENOL TOTAL CYANIDE	TOTAL METALS (I TS TSS T BR CI F NO ₂ NO ₃	VOC PEST DISSOLVED META	OIL & GREASE I	1	ABN A E TPH8100 LI	8270 625 SV	1, 4 DIOXANE 8021 BTEX	524.2 524.2 BTEX 8260 624 I, 4 DIOXANE		INDICATE BOTH START & FINISH DATE/TIME	SAMPLE I.D.
<u> </u>	GNITABILITY E. COLI PLATE COUNT	S TOC DOC	IST BELOW) DS Spec. Con. SO ₄ NO ₃ NO ₂	HERB LS (LIST BELOW)		MAEPH PCB 608 PCB 8082	EN (PAH)	MAVPH TICs <u>Edb</u> dbcp	HALOS	524.2 MTBE ONLY	(SEE BELOW)	SAMPLING DATE/TIME *IF COMPOSITE,	
2	MICRO OTHER	NORGANICS		TCLP METALS		OC C	S		000				

Eastern Analytical, Inc. professional laboratory and drilling services

25 Chenell Drive | Concord, NH 03301 | Tel: 603.228.0525 | 1.800.287.0525 | E-Mail: CustomerService@EasternAnalytical.com | www.EasternAnalytical.com

(WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Angela Emerson LE Environmental LLC 21 North Main Street #1 Waterbury, VT 05676

Melae !

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 211876

Client Identification: Pigeon Property | 19-138

Date Received: 6/19/2020

Dear Ms. Emerson:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

+.2.20

of pages (excluding cover letter)

SAMPLE CONDITIONS PAGE

Client: LE Environmental LLC

Temperature upon receipt (°C): 1.8

Client Designation: Pigeon Property | 19-138

Received on ice or cold packs (Yes/No): Y

EAI ID#: 211876

Acceptable to	emperature range (°C): 0-6				,
Lab ID	Sample ID	Date Received	Date Sampled	Sample % Dry Matrix Weight	Exceptions/Comments (other than thermal preservation)
211876.01	DWS-1	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.02	MW-2	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.03	MW-1	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.04	Duplicate	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.05	MW-3	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.06	MW-4	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.07	MW-5	6/19/20	6/17/20	aqueous	Adheres to Sample Acceptance Policy
211876.08	Trip Blank	6/19/20	5/26/20	aqueous	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis. Immediate analyses, pH, Total Residual Chlonne, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

- 1) EPA 600/4-79-020, 1983
- 2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 4th edition, 1992

EAI ID#: 211876

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Sample ID:	MVV-2	MW-1	Duplicate	MW-3	MW-4	MW-5	Trip Blank
Lab Sample ID:	211876.02	211876.03	211876.04	211876.05	211876.06	211876.07	211876.08
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	5/26/20
Date Received:	6/19/20	6/19/20	6/19/20	6/19/20	6/19/20	6/19/20	6/19/20
Units:				ug/L	ug/L	ug/L	ug/L
	ug/L	ug/L	ug/L			_	6/25/20
Date of Analysis:	6/25/20	6/27/20	6/27/20	6/27/20	6/27/20	6/25/20	
Analyst:	JAK	DGM	DGM	DGM	DGM	JAK	JAK
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	1	100	100	1	1	1	1
Dichlorodifluoromethane	< 2	< 200	< 200	< 2	< 2	< 2	< 2
Chloromethane	< 2	< 200	< 200	< 2	< 2	< 2	< 2
Vinyl chloride Bromomethane	< 1 < 2	< 100 < 200	< 100 < 200	< 1 < 2	< 1 < 2	< 1 < 2	< 1 < 2
Chloroethane	< 2	< 200	< 200	< 2	< 2	< 2	< 2
Trichlorofluoromethane	< 2	< 200	< 200	< 2	< 2	< 2	< 2
Diethyl Ether	< 2	< 200	< 200	< 2	< 2	< 2	< 2
Acetone	12	< 1000	< 1000	19	< 10	50	< 10
1,1-Dichloroethene	< 0.5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5
Methylene chloride Carbon disulfide	< 1 < 2	< 100 < 200	< 100 < 200	< 1 < 2	< 1 < 2	< 1 < 2	< 1 < 2
Methyl-t-butyl ether(MTBE)	< 1	2100	2100	< 1	2.8	< 1	<1
trans-1,2-Dichloroethene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,1-Dichloroethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
2,2-Dichloropropane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
2-Butanone(MEK)	< 10	< 1000	< 1000	< 10 < 1	< 10 < 1	< 10 < 1	< 10 < 1
Bromochloromethane Tetrahydrofuran(THF)	< 1 < 10	< 100 < 1000	< 100 < 1000	< 10	< 10	< 10	< 10
Chloroform	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,1,1-Trichloroethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
Carbon tetrachloride	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,1-Dichloropropene	< 1	<′100	< 100	< 1	< 1	< 1	< 1
Benzene	1.3	14000	13000	< 1	< 1	1.8	< 1 < 1
1,2-Dichloroethane Trichloroethene	< 1 < 1	< 100 < 100	< 100 < 100	< 1 < 1	< 1 < 1	< 1 < 1	< 1
1,2-Dichloropropane	<1	< 100	< 100	< 1	< 1	< 1	< 1
Dibromomethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
Bromodichloromethane	< 0.5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone(MIBK)	< 10	< 1000	< 1000	< 10	< 10	< 10	< 10
cis-1,3-Dichloropropene	< 0.5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5
Toluene trans-1,3-Dichloropropene	1.1 < 0.5	34000 < 50	34000 < 50	< 1 < 0.5	< 1 < 0.5	8.2 < 0.5	< 1 < 0.5
1,1,2-Trichloroethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
2-Hexanone	< 10	< 1000	< 1000	< 10	< 10	< 10	< 10
Tetrachloroethene	< 1	< 100	< 100	< 1	. < 1	< 1	< 1
1,3-Dichloropropane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
Dibromochloromethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,2-Dibromoethane(EDB)	< 0.5 < 1	< 50 < 100	< 50 < 100	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1
Chlorobenzene 1,1,1,2-Tetrachioroethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
Ethylbenzene	9.4	3900	4000	< 1	< 1	1	< 1
mp-Xylene	18	13000	14000	< 1	< 1	3.6	< 1
o-Xylene	2	6000	6300	< 1	< 1	1.3	< 1
Styrene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
Bromoform	< 2	< 200	< 200	< 2	< 2	< 2 < 1	< 2 < 1
IsoPropylbenzene	1.5	120	140	< 1	< 1	<u> </u>	2

EAIID#: 211876

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Sample ID:	MW-2	MW-1	Duplicate	MW-3	MW-4	MW-5	Trip Blank
Lab Sample ID:	211876.02	211876.03	211876.04	211876.05	211876.06	211876.07	211876.08
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	5/26/20
Date Received:	6/19/20	6/19/20	6/19/20	6/19/20	6/19/20	6/19/20	6/19/20
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Date of Analysis:	6/25/20	6/27/20	6/27/20	6/27/20	6/27/20	6/25/20	6/25/20
Analyst:	JAK	DGM	DGM	DGM	DGM	JAK	JAK
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	1	100	100	1	1	1	1
Bromobenzene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,2,3-Trichloropropane	< 0.5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5
n-Propylbenzene	4.1	330	380	< 1	< 1	< 1	< 1
2-Chlorotoluene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
4-Chlorotoluene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,3,5-Trimethylbenzene	7.1	770	890	< 1	< 1	< 1	<1
tert-Butylbenzene	2.1	< 100	< 100	< 1	< 1	< 1	< 1 < 1
1,2,4-Trimethylbenzene	22	2900	3200	< 1	< 1 < 1	1.4 < 1	< 1
sec-Butylbenzene	2.3	< 100	< 100	< 1 < 1	<1	< 1	< 1
1,3-Dichlorobenzene	< 1	< 100 < 100	< 100 < 100	< 1	< 1	< 1	<1
p-Isopropyltoluene	1.1 < 1	< 100	< 100 < 100	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
n-Butylbenzene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	< 0.2	< 20	< 20	< 0.2	< 0.2	< 0.2	< 0.2
1,2,4-Trichlorobenzene	< 1	< 100	< 100	< 1	< 1	< 1	< 1
Hexachlorobutadiene	< 0.5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	5.3	640	690	< 0.5	< 0.5	0.55	< 0.5
1,2,3-Trichlorobenzene	< 0.5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr)	111 %R	96 %R	95 %R	90 %R	91 %R	103 %R	90 %R
1,2-Dichlorobenzene-d4 (surr)	98 %R	94 %R	92 %R	95 %R	97 %R	102 %R	106 %R
Toluene-d8 (surr)	101 %R	107 %R	108 %R	108 %R	111 %R	104 %R	99 %R
1,2-Dichloroethane-d4 (surr)	110 %R	104 %R	106 %R	102 %R	106 %R	108 %R	110 %R

EAI ID#: 211876

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Sample Notes/Deviations:

Deviations from the Report:

MW-1, Duplicate

Parameter: Toluene

Date of Analysis: 6/30/2020

Dilution Factor: 500

MW-2: Acetone, n-Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, sec-Butylbenzene, Naphthalene exhibited recovery outside acceptance limits in the Quality Control sample(s).

MW-5: Acetone, 1,2,4-Trimethylbenzene, Naphthalene exhibited recovery outside acceptance limits in the Quality Control sample(s).

MW-5: Benzene, Toluene, Ethylbenzene, mp-Xylene, o-Xylene, 1,2,4-Trimethylbenzene may be the result of carryover from Duplicate sample. There were no additional vials available for reanalysis.

MW-1, Duplicate, MW-3, and MW-4: Bromoform exhibited recovery outside acceptance limits in the Quality Control sample(s). The analyte(s) were not detected in the sample(s).

The following analytes were not assessed down to the listed concentrations, 1,2-dibromoethane(EDB) (0.05ug/L), 1,2,3-Trichloropropane (0.02ug/L). Due to sample matrix interference and/or insuficient sample volume provided.

Client: LE Environmental LLC

EAI ID#: 211876 Batch ID: 637286-94709/A062520vVT821

Client Designation: Pigeon Property | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Dichlorodifluoromethane	< 2	26 (128 %R)	22 (110 %R) (15 RPD)	6/25/2020	ug/L	40 - 160	20	8260C
Chloromethane	< 2	* 37 (186 %R)	27 (137 %R) (30 RPD) !	6/25/2020	ug/L	40 - 160	20	8260C
Vinyl chloride	< 1	* 34 (168 %R)	26 (128 %R) (27 RPD) !	6/25/2020	ug/L	70 - 130	20	8260C
Bromomethane	< 2	14 (71 %R)	16 (79 %R) (11 RPD)	6/25/2020	ug/L	40 - 160	20	8260C
Chloroethane	< 2	26 (128 %R)	25 (127 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Trichlorofluoromethane	< 2	19 (94 %R)	19 (97 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Diethyl Ether	< 2	22 (110 %R)	* 28 (138 %R) (23 RPD) !	6/25/2020	ug/L	70 - 130	20	8260C
Acetone	< 10	29 (145 %R)	* 36 (178 %R) (21 RPD) !	6/25/2020	ug/L	40 - 160	20	8260C
1,1-Dichloroethene	< 0.5	20 (100 %R)	21 (104 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Methylene chloride	< 1	19 (97 %R)	18 (92 %R) (6 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Carbon disulfide	< 2	24 (119 %R)	22 (108 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Methyl-t-butyl ether(MTBE)	< 1	21 (103 %R)	20 (101 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
trans-1,2-Dichloroethene	< 1	19 (94 %R)	17 (86 %R) (9 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,1-Dichloroethane	< 1	21 (106 %R)	20 (99 %R) (7 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
2,2-Dichloropropane	< 1	24 (118 %R)	22 (108 %R) (9 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
cis-1,2-Dichloroethene	< 1	23 (116 %R)	22 (111 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
2-Butanone(MEK)	< 10	24 (118 %R)	26 (128 %R) (8 RPD)	6/25/2020	ug/L	40 - 160	20	8260C
Bromochloromethane	< 1	17 (84 %R)	16 (81 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Tetrahydrofuran(THF)	< 10	26 (129 %R)	* 28 (139 %R) (8 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Chloroform	< 1	19 (97 %R)	18 (91 %R) (7 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,1,1-Trichloroethane	< 1	21 (105 %R)	19 (96 %R) (9 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Carbon tetrachloride	< 1	19 (95 %R)	17 (86 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,1-Dichloropropene	< 1	22 (109 %R)	20 (99 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Benzene	< 1	21 (103 %R)	19 (95 %R) (7 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2-Dichloroethane	< 1	20 (98 %R)	19 (95 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Trichloroethene	< 1	20 (99 %R)	18 (92 %R) (8 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2-Dichloropropane	< 1	22 (108 %R)	21 (103 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Dibromomethane	< 1	18 (91 %R)	18 (90 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Bromodichloromethane	< 0.5	21 (106 %R)	20 (100 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
4-Methyl-2-pentanone(MIBK)	< 10	21 (104 %R)	23 (113 %R) (8 RPD)		ug/L	40 - 160	20	8260C
cis-1,3-Dichloropropene	< 0.5	23 (115 %R)	22 (111 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Toluene	< 1	22 (108 %R)	20 (99 %R) (9 RPD)		ug/L	70 - 130	20	8260C
trans-1,3-Dichloropropene	< 0.5	24 (120 %R)	24 (118 %R) (2 RPD)		ug/L	70 - 130		8260C
1,1,2-Trichloroethane	< 1	22 (110 %R)	21 (107 %R) (3 RPD)		ug/L	70 - 130	20	8260C
2-Hexanone	< 10	28 (142 %R)	30 (152 %R) (6 RPD)		ug/L	40 - 160		8260C
Tetrachloroethene	< 1	18 (92 %R)	16 (82 %R) (11 RPD)		ug/L	70 - 130		8260C
1,3-Dichloropropane	< 1	22 (108 %R)	21 (104 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Dibromochloromethane	< 1	19 (95 %R)	18 (90 %R) (4 RPD)		ug/L	70 - 130	20	8260C
1,2-Dibromoethane(EDB)	< 0.5	20 (99 %R)	20 (99 %R) (0 RPD)		ug/L	70 - 130	20	8260C
Chlorobenzene	< 1	20 (102 %R)	19 (95 %R) (8 RPD)		ug/L	70 - 130	20	8260C
1,1,1,2-Tetrachloroethane	< 1	19 (97 %R)	18 (90 %R) (7 RPD)		ug/L	70 - 130		8260C
Ethylbenzene	< 1	23 (117 %R)	21 (107 %R) (9 RPD)		ug/L	70 - 130	20	8260C
mp-Xylene	< 1	46 (114 %R)	42 (104 %R) (9 RPD)		ug/L	70 - 130	20	8260C
o-Xylene	< 1	21 (106 %R)	19 (97 %R) (9 RPD)		ug/L	70 - 130	20	8260C
Styrene	< 1	24 (119 %R)	22 (110 %R) (8 RPD)		ug/L	70 - 130		8260C
Bromoform	< 2	17 (87 %R)	17 (86 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	20	8260C

EAI ID#: 211876

Batch ID: 637286-94709/A062520vVT821

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
IsoPropylbenzene	< 1	25 (127 %R)	23 (115 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Bromobenzene	< 1	20 (101 %R)	19 (94 %R) (8 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,1,2,2-Tetrachloroethane	< 1	25 (124 %R)	25 (124 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2,3-Trichloropropane	< 0.5	22 (110 %R)	22 (111 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
n-Propylbenzene	< 1	* 29 (143 %R)	26 (129 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
2-Chlorotoluene	< 1	* 27 (137 %R)	25 (125 %R) (9 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
4-Chlorotoluene	< 1	26 (128 %R)	24 (118 %R) (8 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,3,5-Trimethylbenzene	< 1	* 26 (132 %R)	24 (119 %R) (11 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
tert-Butylbenzene	< 1	* 27 (134 %R)	24 (120 %R) (11 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2,4-Trimethylbenzene	< 1	* 26 (131 %R)	24 (119 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
sec-Butylbenzene	< 1	* 28 (140 %R)	25 (125 %R) (11 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,3-Dichlorobenzene	< 1	22 (109 %R)	20 (99 %R) (9 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
p-Isopropyltoluene	< 1	23 (116 %R)	21 (103 %R) (11 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,4-Dichlorobenzene	< 1	21 (103 %R)	19 (94 %R) (9 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2-Dichlorobenzene	< 1	21 (103 %R)	19 (96 %R) (8 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
n-Butylbenzene	< 1	* 27 (133 %R)	24 (119 %R) (12 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2-Dibromo-3-chloropropane	< 0.2	19 (93 %R)	19 (96 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2,4-Trichlorobenzene	< 1	18 (91 %R)	17 (85 %R) (7 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Hexachlorobutadiene	< 0.5	16 (82 %R)	15 (74 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
Naphthalene	< 0.5	18 (91 %R)	18 (92 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
1,2,3-Trichlorobenzene	< 0.5	20 (99 %R)	19 (95 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	20	8260C
4-Bromofluorobenzene (surr)	93 %R	108 %R	108 %R	6/25/2020	% Rec	70 - 130	50	8260C
1,2-Dichlorobenzene-d4 (surr)	107 %R	100 %R	98 %R	6/25/2020	% Rec	70 - 130	50	8260C
Toluene-d8 (surr)	98 %R	106 %R	105 %R	6/25/2020	% Rec	70 - 130	50	8260C
1,2-Dichloroethane-d4 (surr)	117 %R	103 %R	104 %R	6/25/2020	% Rec	70 - 130	20	8260C

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/!Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

QC REPORT

EAI ID#: 211876

Batch ID: 637292-11728/A062620vVT821

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Dichlorodifluoromethane	< 2	30 (149 %R)	28 (141 %R) (6 RPD)	6/27/2020	ug/L	40 - 160	20	8260C
Chloromethane	< 2	25 (127 %R)	24 (122 %R) (4 RPD)		ug/L	40 - 160	20	8260C
Vinyl chloride	< 1	* 32 (159 %R)	* 30 (149 %R) (6 RPD)		ug/L	70 - 130	20	8260C
Bromomethane	< 2	23 (113 %R)	22 (110 %R) (3 RPD)		ug/L	40 - 160	20	8260C
Chloroethane	< 2	25 (125 %R)	24 (118 %R) (5 RPD)		ug/L	70 - 130	20	8260C
Trichlorofluoromethane	< 2	21 (106 %R)	20 (102 %R) (4 RPD)		ug/L	70 - 130	20	8260C
Diethyl Ether	< 2	21 (107 %R)	21 (103 %R) (4 RPD)		ug/L	70 - 130	20	8260C
Acetone	< 10	23 (114 %R)	23 (113 %R) (0 RPD)		ug/L	40 - 160	20	8260C
1,1-Dichloroethene	< 0.5	20 (102 %R)	20 (99 %R) (4 RPD)		ug/L	70 - 130	20	8260C
Methylene chloride	< 1	21 (106 %R)	20 (102 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Carbon disulfide	< 2	21 (104 %R)	20 (100 %R) (4 RPD)		ug/L	70 - 130	20	8260C
Methyl-t-butyl ether(MTBE)	< 1	20 (100 %R)	19 (96 %R) (4 RPD)		ug/L	70 - 130	20	8260C
trans-1,2-Dichloroethene	< 1	21 (104 %R)	20 (99 %R) (4 RPD)		ug/L	70 - 130	20	8260C
1,1-Dichloroethane	< 1	20 (101 %R)	20 (100 %R) (1 RPD)		ug/L	70 - 130	20	8260C
2,2-Dichloropropane	< 1	15 (75 %R)	15 (73 %R) (4 RPD)		ug/L	70 - 130	20	8260C
cis-1,2-Dichloroethene	< 1	18 (89 %R)	17 (87 %R) (2 RPD)		ug/L	70 - 130	20	8260C
2-Butanone(MEK)	< 10	21 (104 %R)	20 (99 %R) (5 RPD)		ug/L	40 - 160	20	8260C
Bromochloromethane	< 1	19 (97 %R)	19 (95 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Tetrahydrofuran(THF)	< 10	22 (109 %R)	20 (102 %R) (6 RPD)		ug/L	70 - 130	20	8260C
Chloroform	< 1	20 (100 %R)	19 (97 %R) (3 RPD)		ug/L	70 - 130	20	8260C
1,1,1-Trichloroethane	< 1	19 (97 %R)	18 (92 %R) (5 RPD)		ug/L	70 - 130	20	8260C
Carbon tetrachloride	< 1	16 (81 %R)	16 (79 %R) (2 RPD)		ug/L ug/L	70 - 130	20	8260C
1,1-Dichloropropene	< 1	20 (99 %R)	19 (96 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Benzene	< 1	20 (101 %R)	19 (90 %R) (5 RPD)		ug/L ug/L	70 - 130	20	8260C
1,2-Dichloroethane	< 1	19 (96 %R)	18 (92 %R) (4 RPD)			70 - 130	20	8260C
Trichloroethene	< 1	20 (98 %R)	20 (100 %R) (2 RPD)		ug/L	70 - 130	20	8260C
1,2-Dichloropropane	< 1	19 (97 %R)	19 (95 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Dibromomethane	<1	19 (95 %R)	19 (93 %R) (2 RPD)		ug/L	70 - 130		8260C
Bromodichloromethane	< 0.5	17 (85 %R)			ug/L	70 - 130	20	
4-Methyl-2-pentanone(MIBK)	< 10	21 (106 %R)	17 (83 %R) (2 RPD)		ug/L		20	8260C
cis-1,3-Dichloropropene	< 0.5		20 (99 %R) (6 RPD)	6/27/2020	ug/L	40 - 160	20	8260C
Toluene	< 1	17 (85 %R) 22 (109 %R)	17 (83 %R) (2 RPD)	6/27/2020 6/27/2020	ug/L	70 - 130 70 - 130	20	8260C
trans-1,3-Dichloropropene	< 0.5	,	21 (105 %R) (3 RPD)		ug/L		20	8260C
1,1,2-Trichloroethane	< 1	19 (96 %R) 22 (108 %R)	19 (94 %R) (3 RPD)		ug/L	70 - 130	20	8260C
2-Hexanone	< 10		21 (107 %R) (1 RPD)		ug/L	70 - 130	20	8260C
Tetrachloroethene	< 1	23 (113 %R)	21 (106 %R) (7 RPD)		ug/L	40 - 160	20	8260C
1,3-Dichloropropane	< 1	18 (92 %R)	18 (89 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Dibromochloromethane	<1	20 (99 %R)	19 (97 %R) (2 RPD)		ug/L	70 - 130	20	8260C
1,2-Dibromoethane(EDB)		16 (80 %R)	16 (78 %R) (2 RPD)		ug/L	70 - 130	20	8260C
Chlorobenzene	< 0.5	20 (101 %R)	20 (102 %R) (1 RPD)		ug/L	70 - 130	20	8260C
1,1,1,2-Tetrachloroethane	< 1	21 (105 %R)	20 (102 %R) (3 RPD)		ug/L	70 - 130	20	8260C
Ethylbenzene	< 1	17 (84 %R)	17 (83 %R) (2 RPD)		ug/L	70 - 130	20	8260C
•	< 1	22 (110 %R)	21 (106 %R) (4 RPD)		ug/L	70 - 130	20	8260C
mp-Xylene	< 1	39 (98 %R)	38 (95 %R) (3 RPD)		ug/L	70 - 130	20	8260C
o-Xylene	< 1	21 (105 %R)	21 (103 %R) (2 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
Styrene	< 1	21 (104 %R)	20 (101 %R) (3 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
Bromoform	< 2	* 14 (68 %R)	* 14 (68 %R) (0 RPD)	6/27/2020	ug/L	70 - 130	20	8260C

QC REPORT

EAI ID#: 211876

Batch ID: 637292-11728/A062620vVT821

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
IsoPropylbenzene	< 1	24 (118 %R)	23 (114 %R) (3 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
Bromobenzene	< 1	19 (94 %R)	18 (89 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,1,2,2-Tetrachloroethane	< 1	22 (111 %R)	20 (101 %R) (10 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,2,3-Trichloropropane	< 0.5	23 (117 %R)	22 (111 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
n-Propylbenzene	< 1	22 (111 %R)	22 (108 %R) (3 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
2-Chlorotoluene	< 1	21 (105 %R)	20 (102 %R) (4 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
4-Chlorotoluene	< 1	22 (108 %R)	21 (104 %R) (4 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,3,5-Trimethylbenzene	< 1	22 (108 %R)	21 (103 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
tert-Butylbenzene	< 1	21 (107 %R)	20 (102 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,2,4-Trimethylbenzene	< 1	24 (118 %R)	23 (114 %R) (4 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
sec-Butylbenzene	< 1	22 (111 %R)	21 (106 %R) (4 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,3-Dichlorobenzene	< 1	20 (102 %R)	19 (97 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
p-Isopropyltoluene	< 1	22 (108 %R)	21 (103 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,4-Dichlorobenzene	< 1	19 (96 %R)	19 (94 %R) (3 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,2-Dichlorobenzene	< 1	20 (100 %R)	20 (98 %R) (2 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
n-Butylbenzene	< 1	24 (120 %R)	23 (114 %R) (5 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,2-Dibromo-3-chloropropane	< 0.2	16 (81 %R)	16 (79 %R) (2 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,2,4-Trichlorobenzene	< 1	22 (110 %R)	21 (103 %R) (7 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
Hexachlorobutadiene	< 0.5	16 (81 %R)	16 (78 %R) (3 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
Naphthalene	< 0.5	25 (124 %R)	23 (114 %R) (8 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
1,2,3-Trichlorobenzene	< 0.5	21 (107 %R)	20 (98 %R) (8 RPD)	6/27/2020	ug/L	70 - 130	20	8260C
4-Bromofluorobenzene (surr)	93 %R	97 %R	94 %R	6/27/2020	% Rec	70 - 130	50	8260C
1,2-Dichlorobenzene-d4 (surr)	94 %R	98 %R	97 %R	6/27/2020	% Rec	70 - 130	50	8260C
Toluene-d8 (surr)	112 %R	106 %R	107 %R	6/27/2020	% Rec	70 - 130	50	8260C
1,2-Dichloroethane-d4 (surr)	102 %R	99 %R	97 %R	6/27/2020	% Rec	70 - 130	20	8260C

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/!Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EAI ID#: 211876

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Sample ID:	DWS-1	
Sample ID.	D449-1	
Lab Sample ID:	211876.01	
Matrix:		
	aqueous	
Date Sampled:	6/17/20	
Date Received:	6/19/20	
Units:	ug/L	
Date of Analysis:	6/25/20	
Analyst:	AM	
Method:	524.2	
Dilution Factor:	1	
Dichlorodifluoromethane	< 0.5	
Chloromethane	< 0.5	
Vinyl chloride	< 0.5	
Bromomethane	< 0.5	
Chloroethane	< 0.5	•
Trichlorofluoromethane	< 0.5	
Diethyl Ether	< 5	
Acetone	< 10	
1,1-Dichloroethene	< 0.5	
tert-Butyl Alcohol (TBA)	< 30	
Methylene chloride	< 0.5 < 2	
Carbon disulfide Methyl-t-butyl ether(MTBE)	< 0.5	
Ethyl-t-butyl ether(ETBE)	< 0.5 < 0.5	
Isopropyl ether(DIPE)	< 0.5	
tert-amyl methyl ether(TAME)	< 0.5	
trans-1,2-Dichloroethene	< 0.5	
1,1-Dichloroethane	< 0.5	
2,2-Dichloropropane	< 0.5	
cis-1,2-Dichloroethene	< 0.5	
2-Butanone(MEK)	< 5	
Bromochloromethane	< 0.5	
Tetrahydrofuran(THF)	< 5	
Chloroform	< 0.5	
1,1,1-Trichloroethane	< 0.5	
Carbon tetrachloride	< 0.5	
1,1-Dichloropropene	< 0.5	
Benzene	< 0.5	
1,2-Dichloroethane Trichloroethene	< 0.5 < 0.5	
1,2-Dichloropropane	< 0.5 < 0.5	
Dibromomethane	< 0.5	
Bromodichloromethane	< 0.5	
4-Methyl-2-pentanone(MIBK)	< 5	
cis-1,3-Dichloropropene	< 0.3	
Toluene	< 0.5	
trans-1,3-Dichloropropene	< 0.3	
1,1,2-Trichloroethane	< 0.5	
2-Hexanone	< 5	
Tetrachloroethene	< 0.5	
1,3-Dichloropropane	< 0.5	
Dibromochloromethane	< 0.5	
1,2-Dibromoethane(EDB)	< 0.5	
Chlorobenzene	< 0.5	
1,1,1,2-Tetrachloroethane	< 0.5	
Ethylbenzene	< 0.5	
mp-Xylene	< 0.5	

EAI ID#: 211876

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Sample ID:	DWS-1	
Lab Sample ID:	211876.01	
Matrix:	aqueous	
Date Sampled:	6/17/20	
Date Received:	6/19/20	
Units:	ug/L	
Date of Analysis:	6/25/20	
Analyst:	AM	
Method:	524.2	
Dilution Factor:	1	
o-X y lene	< 0.5	
Styrene	< 0.5	
Bromoform IsoPropylbenzene	< 0.5 < 0.5	
Bromobenzene	< 0.5	
1,1,2,2-Tetrachloroethane	< 0.5	
1,2,3-Trichloropropane	< 0.5	
n-Propylbenzene 2-Chlorotoluene	< 0.5 < 0.5	
4-Chlorotoluene	< 0.5 < 0.5	
1,3,5-Trimethylbenzene	< 0.5	
tert-Butylbenzene	< 0.5	
1,2,4-Trimethylbenzene	< 0.5	
sec-Butylbenzene 1,3-Dichlorobenzene	< 0.5 < 0.5	
p-Isopropyltoluene	< 0.5	
1,4-Dichlorobenzene	< 0.5	
1,2-Dichlorobenzene	< 0.5	
n-Butylbenzene	< 0.5 < 0.5	
1,2-Dibromo-3-chloropropane 1,3,5-Trichlorobenzene	< 0.5 < 0.5	
1,2,4-Trichlorobenzene	< 0.5	
Hexachlorobutadiene	< 0.5	
Naphthalene	< 0.5 < 0.5	
1,2,3-Trichlorobenzene 4-Bromofluorobenzene (surr)	< 0.5 103 %R	
1,2-Dichlorobenzene-d4 (surr)	106 %R	

Client: LE Environmental LLC

EAI ID#: 211876

Batch ID: 637286-83805/A062520V5241

Client Designation: Pigeon Property | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
Dichlorodifluoromethane	< 0.5	* 14 (143 %R)	* 14 (137 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Chloromethane	< 0.5	13 (129 %R)	12 (117 %R) (10 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Vinyl chloride	< 0.5	12 (120 %R)	12 (116 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Bromomethane	< 0.5	11 (109 %R)	11 (105 %R) (4 RPD)		ug/L		30	524.2
Chloroethane	< 0.5	11 (111 %R)	11 (110 %R) (2 RPD)		ug/L	70 - 130	30	524.2
Trichlorofluoromethane	< 0.5	11 (106 %R)	10 (103 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Diethyl Ether	< 5	11 (108 %R)	11 (109 %R) (1 RPD)		ug/L	70 - 130	30	524.2
Acetone	< 10	11 (108 %R)	11 (109 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1-Dichloroethene	< 0.5	11 (107 %R)	10 (101 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
tert-Butyl Alcohol (TBA)	< 30	55 (111 %R)	57 (115 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Methylene chloride	< 0.5	11 (107 %R)	11 (107 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Carbon disulfide	< 2	13 (128 %R)	12 (123 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Methyl-t-butyl ether(MTBE)	< 0.5	11 (113 %R)	11 (114 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Ethyl-t-butyl ether(ETBE)	< 0.5	10 (103 %R)	10 (103 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
łsopropyl ether(DIPE)	< 0.5	11 (107 %R)	11 (107 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
tert-amyl methyl ether(TAME)	< 0.5	12 (117 %R)	12 (116 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
trans-1,2-Dichloroethene	< 0.5	11 (111 %R)	11 (108 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1-Dichloroethane	< 0.5	11 (113 %R)	11 (111 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
2,2-Dichloropropane	< 0.5	13 (125 %R)	12 (120 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
cis-1,2-Dichloroethene	< 0.5	11 (113 %R)	11 (111 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
2-Butanone(MEK)	< 5	11 (111 %R)	11 (109 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Bromochloromethane	< 0.5	11 (107 %R)	11 (107 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Tetrahydrofuran(THF)	< 5	12 (115 %R)	11 (114 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Chloroform	< 0.5	11 (108 %R)	11 (106 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1,1-Trichloroethane	< 0.5	13 (126 %R)	12 (120 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Carbon tetrachloride	< 0.5	12 (116 %R)	11 (111 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1-Dichloropropene	< 0.5	11 (112 %R)	11 (106 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Benzene	< 0.5	11 (107 %R)	10 (105 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2-Dichloroethane	< 0.5	11 (105 %R)	10 (104 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Trichloroethene	< 0.5	11 (112 %R)	11 (110 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2-Dichloropropane	< 0.5	11 (108 %R)	11 (105 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Dibromomethane	< 0.5	9.8 (98 %R)	10 (100 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Bromodichloromethane	< 0.5	11 (113 %R)	11 (112 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
4-Methyl-2-pentanone(MIBK)	< 5	11 (109 %R)	11 (111 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
cis-1,3-Dichloropropene	< 0.3	11 (114 %R)	11 (112 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Toluene	< 0.5	11 (109 %R)	11 (106 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
trans-1,3-Dichloropropene	< 0.3	12 (120 %R)	12 (119 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1,2-Trichloroethane	< 0.5	11 (111 %R)	11 (111 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
2-Hexanone	< 5	11 (113 %R)	11 (112 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Tetrachloroethene	< 0.5	11 (112 %R)	11 (109 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,3-Dichloropropane	< 0.5	10 (104 %R)	10 (103 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Dibromochloromethane	< 0.5	11 (110 %R)	11 (108 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2-Dibromoethane(EDB)	< 0.5	11 (107 %R)	11 (106 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Chlorobenzene	< 0.5	11 (110 %R)	11 (108 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1,1,2-Tetrachloroethane	< 0.5	11 (109 %R)	11 (107 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Ethylbenzene	< 0.5	12 (115 %R)	11 (112 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
								11

EAI ID#: 211876

Batch ID: 637286-83805/A062520V5241

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Parameter Name	Blank	LCS	LCSD	Analysis Date	Units	Limits	RPD	Method
mp-Xylene	< 0.5	22 (110 %R)	21 (107 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
o-Xylene	< 0.5	11 (108 %R)	11 (106 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Styrene	< 0.5	11 (109 %R)	11 (109 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Bromoform	< 0.5	12 (120 %R)	12 (121 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
IsoPropylbenzene	< 0.5	12 (120 %R)	12 (117 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Bromobenzene	< 0.5	10 (101 %R)	9.9 (99 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,1,2,2-Tetrachloroethane	< 0.5	10 (105 %R)	10 (104 %R) (0 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2,3-Trichloropropane	< 0.5	11 (111 %R)	11 (114 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
n-Propylbenzene	< 0.5	11 (110 %R)	11 (107 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
2-Chlorotoluene	< 0.5	11 (109 %R)	11 (107 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
4-Chlorotoluene	< 0.5	11 (108 %R)	11 (105 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,3,5-Trimethylbenzene	< 0.5	11 (108 %R)	11 (106 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
tert-Butylbenzene	< 0.5	11 (115 %R)	11 (112 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2,4-Trimethylbenzene	< 0.5	11 (110 %R)	11 (108 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
sec-Butylbenzene	< 0.5	11 (114 %R)	11 (110 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,3-Dichlorobenzene	< 0.5	11 (109 %R)	11 (107 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
p-Isopropyitoluene	< 0.5	11 (114 %R)	11 (110 %R) (4 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,4-Dichlorobenzene	< 0.5	11 (107 %R)	11 (106 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2-Dichlorobenzene	< 0.5	11 (109 %R)	11 (107 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
n-Butylbenzene	< 0.5	11 (111 %R)	11 (106 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2-Dibromo-3-chloropropane	< 0.5	11 (113 %R)	11 (112 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,3,5-Trichlorobenzene	< 0.5	11 (113 %R)	11 (109 %R) (3 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2,4-Trichlorobenzene	< 0.5	11 (112 %R)	11 (109 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Hexachlorobutadiene	< 0.5	10 (102 %R)	9.7 (97 %R) (5 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
Naphthalene	< 0.5	11 (110 %R)	11 (109 %R) (1 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
1,2,3-Trichlorobenzene	< 0.5	11 (109 %R)	11 (108 %R) (2 RPD)	6/25/2020	ug/L	70 - 130	30	524.2
4-Bromofluorobenzene (surr)	104 %R	107 %R	108 %R	6/25/2020	% Rec	70 - 130		524.2
1,2-Dichlorobenzene-d4 (surr)	105 %R	106 %R	107 %R	6/25/2020	% Rec	70 - 130		524.2

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

*/!Flagged analyte recoveries deviated from the QA/QC limits. Unless noted on the sample page, flagged analytes that exceed acceptance limits in the Quality Control sample do not impact the data.

EAI ID#: 211876

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

Sample ID:	MW-2	MVV-1	Duplicate	MW-4					
Lab Sample ID:	211876.02	211876.03	211876.04	211876.06					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	6/17/20	6/17/20	6/17/20	6/17/20	Analytical		Date of		
Date Received:	6/19/20	6/19/20	6/19/20	6/19/20	Matrix	Units	Analysis	Method A	nalyst
Arsenic	0.0057	0.017	0.017	0.0031	AqTot	mg/L	6/23/20	6020	DS
Barium	0.71	1.6	1.6	0.46	AqTot	mg/L	6/23/20	6020	DS
Cadmium	0.0019	0.0012	0.0012	0.0012	AqTot	mg/L	6/23/20	6020	DS
Chromium	< 0.001	0.022	0.024	0.0019	AqTot	mg/L	6/23/20	6020	DS
Lead	0.0011	0.12	0.12	0.0057	AqTot	mg/L	6/23/20	6020	DS
Mercury	< 0.0001	< 0.0001	< 0.0001	< 0.0001	AqTot	mg/L	6/23/20	6020	DS
Selenium	< 0.001	0.0047	0.0034	< 0.001	AqTot	mg/L	6/23/20	6020	DS
Silver	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	6/23/20	6020	DS

Per client request, samples were decanted from preserved containers prior to digestion.

MW-1 and Duplicate may have elevated Selenium concentrations due to matrix interference.

QC REPORT

Client: LE Environmental LLC

Client Designation: Pigeon Property | 19-138

				Date of		
Parameter Name	Blank	LCS	LCSD	Units Analysis	Limits RPI	O Method
Arsenic	< 0.001	1.0 (100 %R)	N.A	mg/L 6/23/20	80 - 120 20	6020
Barium	< 0.001	1.1 (107 %R)	NA	mg/L 6/23/20	80 - 120 20	6020
Cadmium	< 0.001	1.0 (101 %R)	NA.	mg/L 6/23/20	80 - 120 20	6020
Chromium	< 0.001	0.99 (99 %R)	N/	mg/L 6/23/20	80 - 120 2	6020
Lead	< 0.001	1.0 (103 %R)	NA	mg/L 6/23/20	80 - 120 2	6020
Mercury	< 0.0001	0.0011 (107 %R)	NA	mg/L 6/23/20	80 - 120 2	6020
Selenium	< 0.001	1.0 (100 %R)	NA	mg/L 6/23/20	80 - 120 2	6020
Silver	< 0.001	0.011 (109 %R)	NA	mg/L 6/23/20	80 - 120 2	6020

Samples were analyzed within holding times unless noted on the sample results page.

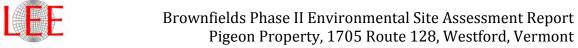
Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

EAI ID#: 211876


^{*/!} Flagged analyte recoveries deviated from the QA/QC limits.

			FIELD READINGS:	FIELD I		,	BY:	RECEIVED BY:		THE:	=	••	DATE	`.	B.Y:	MELINQUISHED BY:	I ON I		1.0	7							i
		SUSPECTED CONTAMINATION:	TED CONI	JUSPEC	The state of	Mor			M	5170	500		19/20	5/12	7	2	12	7					P0 #:				Quote #:
			, I		`	N.		Winds.	,		= /	••	DATE:		₹.	RELINQUISHED	ONITE	7					HER:		GWP, OIL FUED, BROWNFIELD OR OTHER:	GWP, O	
		9	KTORY.	SITE HISTORY.	_	The same of	W.	D	\ \	247	5	900 g	(1) Pg			!							TORMWATER OR	A V S	IPDES: ##	REGULATORY PROGRAM: NPDES: REP TOTW STORMWATER OR	REGULATO
		poor rechange	∻ څو	00		-	BY:	RECEIVED	—	¥			, DATE	1	BY:	RELINQUISHED BY:		<u> </u>					OTHER:		MIT IT	NH	SIAIE:
dwe to	r volum	James	SZ	18 P								>	<u>5</u>			<u>[2</u>]								ì	3		PROJECT #:
	Samples prior to vunning	Prio	s n dw	S									Emm ST		N.	SAMPLER(S): Augul	MPLER(SA							trape ty	L'acom	SITE NAME:
Year	11.0	5.0	- - !	,					•						<u>ל</u>	MA MCP		1						£	@ leenv. Not	E-MAIL: Cingala (E-MAIL:
1.05	*Pluse depart mit. Ds	, de	<u> </u>	*				Excel	Equis	=	E-MAIL PDF	E-MAIL			<u>}</u>	<u> </u>		1							A STATE OF THE STA		FAX:
NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)	TON LIMITS, BILLIN	IAL DETECT	(IE: SPECI	Notes:					No	D T	S S S S S S S S S S S S S S S S S S S	T 50			Þ	ဝ္ဇ		ł			EXT.:				1-2001	PHONE: 802 - 9176- 2001	PHONE:
]YES X NO	TERED?	SAMPLES FIELD FILTERED?	LES FIL	SAMP										C		В	≻	1	6	567	IIP: 05676		STATE: V			CITY: Waterburg	CITY: Woo
			OTHER METALS:	OTHER	No	(3)	(EE)		No	OPTIC	REPORTING O	PRELIM			HVEL	QA/QC Reporting Level	QA/QC REPORT	20					- 6	# + "" M	in St 1	ADDRESS: 21 N Main St Unit	Address:
Fe, MN PB, CU) 13 PP	8 RCRA		METALS:	J°	Co	TEMP. 7				A	1 1 1	Novmal	1 1	DED:	DATE NEEDED:	ATE	10))	+ 0 1	Myda	PROJECT MANAGER: Apple	PROJECT
		$\Big)\Big $	ر ا						-	-				.			f	.	-	-				7			
	_																						1-MEOH	a-NaOH: I	NO:: S-H,SO <i>:</i> : N	PRESERVATIVE: H-HCL: N-HNO;: S-H,SO,: Na-NaOH: M-MEOH	PRESERVATI
•												-								(TER;	(ING W	N-Drini	ICE WATER; D	; SW-SURE	-GROUND WATER	MATRIX: A-AIR; S-SOIL; GW-GROUND WATER; SW-SURFACE WATER; DW-DRINKING WATER; MW WATER WATER	MATRIX: A
																						:					
									_					_													
	W				-														×	. بح		ò		5/26/20		rip Blank	2)
										-									×	2	٤	5	26 - 1235	6/11/20		NN-S	===
	W									X			-					- 1	V	9	(A)	7		W11/20:		3 - C	3
	IJ.																	/ \	✓.	2	B 185	0	120, 450	6/17/26		えてい	₹
	-10									X									X	0	C. P.	C	10 - (03 0	6[17]20		Duplicate	D
1	7/2		-							X									×	Q	B 25	Ö	1030	مداداها		MIN -	3
4.0	w									X			-					/ \	Y	X	CW CX	0	1010 W	6/17/w		MNIN	3
And the second s	W	-												i							D V	o	20.0840	<u>6</u> 17		1- SMG	D
NOTES MEOH VIAL #	# of Containe	HETEROTROPHIC	FECAL COLIFORM ENTEROCOCCI	Reactive Cyanid Flashpoint Total Coliform	Total Cyanide	pH T. Res. COD PHENO	TKN NH ₃	BOD CBOD	TS TSS BR CI F NO₂ NO₃	TOTAL METALS (DISSOLVED META	TCLP 1311 VOC PEST	PEST 8081 OIL & GREASE	8015 DRO PEST 608 PEST 8081	TPH8100 L	ABN <u>A</u>	8015 GRO	i, 4 Dioxane 8021 BTEX	524.2 BTEX 8260 624	GRAB/*	Matrix	~~ 꿈 코	INDICATE BOTH START & FINISH DATE / TIME	STA D	Ö	Sample I.D.	
	RS	TLAIE COUN		E REACT IGNITABILITY E. COL	TOTAL SUI	CHLORINE LS TOC	T. Phos.				ALS (LIST B	ABN M Herb		PCB 608 PCB 8082		VTICS ED Bn pah	MAVPH	HALOS	524.2 MT VTICs	Сомя		Ÿ m	*IF COMPOSITE	* 5			
·			~		LFIDE	DOC	O. PHOS.		EC. CON.		ELOW)	IETALS	PH 1664	3		OB DBCP H		j	TBE ONLY	OSITE		ı	SAMPLING	J 60			
5	Micro OTHER	Ö	MICRO	7	S	NORGANICS	RO	NO	VOC SVOC TOP METALS INORG	ALS	TCLP METALS		9	VOC	SV :			VOC	V								
							9	40 10 11	1					1000	7				į								

M Eastern Analytical, Inc. professional laboratory and drilling services

25 Chenell Drive | Concord, NH 03301 | Tel.: 603.228.0525 | 1.800.287.0525 | E-Mail: CustomerService@EasternAnalytical.com | www.EasternAnalytical.com

(WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Appendix F

Data Validation Report

21 North Main Street • Waterbury, Vermont 05676 Phone: (802) 917-2001 • www.leenv.net

Data Validation Report Pigeon Property 1705 Route 129 Westford, Vermont July 23, 2020

Sampling Summary

The project scope included collection of nine soil samples, five groundwater samples, and one drinking water sample from the Site. Quality Assurance samples included two duplicate soil samples and two trip blanks, and a duplicate groundwater sample and trip blank.

Sampling Procedures and Protocols

Sampling was performed in accordance with the procedures specified in the SSQAPP addenda dated February 25, 2020 except for the following field changes:

- A soil sample was not collected from soil boring SB-3, because the soil boring was installed in the same location at the former gasoline UST, and a soil sample and duplicate were obtained from this location during the UST removal.
- Additional soil samples were obtained from soil boring SB-2 and SB-4, because contamination was noted both at the surface and at deeper depths.
- The soil sample collected from SB-5 could not be obtained from the zone with the highest PID reading due to poor sample recovery. The laboratory sample was instead collected from next sampling run.
- A PCB sample was obtained from soil boring SB-1 in order to get a background PCB level in the event that PCBs were found around the garage.
- The lack of recharge in the groundwater monitoring wells prohibited the collection of metals samples at MW-3 and MW-5.

Field data sheets and the field notebooks were reviewed to ensure proper documentation of the sampling conditions. All entries were made with permanent ink. Entries included the identity of the sampler, sampling location, time, and date. All entries and equipment used were recorded on the daily work report.

The chain of custody forms were reviewed to ensure the sample identification, number, type and size of sample containers, preservatives used; and signatures were properly recorded and were in accordance with the SSQAPP addenda.

The laboratory cover sheets, sample acceptance forms and case narratives were reviewed. All samples adhered to the laboratories' acceptance policies. All samples were analyzed in

Data Validation Report Pigeon Property, 1705 Route 128 Westford, Vermont July 23, 2020

accordance with laboratory SOPs. No deviations from laboratory protocols were noted on the laboratory cover sheets except for the following:

- 1. Groundwater samples were allowed to settle and then were decanted for analysis, due to sediment in the samples.
- 2. The laboratory noted that there was possible carry over of contamination from the duplicate groundwater sample to the MW-5 sample. This could not be resolved at the laboratory due to insufficient groundwater recharge leading to less sample submitted than needed for this resolution.

All samples arrived at the laboratories under chain-of-custody procedures and at appropriate temperature and sample condition, and all analyses were performed within the EPA Method specified holding times.

Trip and Laboratory Blanks

A methanol trip blank was submitted with the soil samples and an aqueous trip blank was submitted with the groundwater samples. The trip blanks were brought into the field and handled with the other samples obtained during the assessment. No contaminants were detected in the blanks, which indicates there was no contamination of samples resulting from handling in the field or while in transit. The laboratories prepared method blanks for all analyses performed and reported no detection of compounds.

MS/MSD and LCS/LCSD

The laboratory noted several deviations from QA limits in the matrix spike/matrix spike duplicate (MS/MSD) and laboratory control samples/laboratory control sample duplicate (LCS/LCSD) analyses. These deviations were high bias exceedences of QA limits, and did not affect the overall usability of the data and findings.

RPD

RPD values were calculated for the field duplicates and corresponding samples.

- A soil sample (UST-1) and duplicate soil sample collected on June 2, 2020. All RPDs were within the 50% allowable range.
- A soil sample (SB-5) and duplicate soil sample collected on June 5, 2020. All RPDs were within the 50% allowable range.
- A groundwater sample (MW-1) and duplicate groundwater sample collected on June 17, 2020 were analyzed. RPD values were within the 30% allowable range.

Surrogate Recovery

Surrogate recovery analyses performed by the laboratories are within acceptable ranges with the following noted exceptions.

Data Validation Report Pigeon Property, 1705 Route 128 Westford, Vermont July 23, 2020

- Surrogates 4-Bromofluorobenzene and 1,2-Dichloroethane-d4 demonstrated recovery outside of the acceptance control limits due to non target sample matrix interference for the soil samples collected on June 2, 2020.
- Surrogates 4-Bromofluorobenzene and 1,2-Dichloroethane-d4 demonstrated recovery outside of the acceptance control limits due to non target sample matrix interference in UST-1 and duplicate

Reporting Limits

Laboratory reporting limits were compared with applicable regulatory criteria for each tested compound as published in the Department of Environmental Conservation Investigation and Remediation of Contaminated Properties Rule. All laboratory reporting limits were below the residential regulatory threshold criteria those previously noted in the SSQAPP form K, except for the groundwater samples obtained from MW-1 and the duplicate. The high concentrations of VOCs in these samples led to dilution and elevated reporting limits. Additionally, the concentrations of Selenium in MW-1 and the groundwater duplicate sample may be elevated due to matrix interference. Reported concentrations were well below VGES.

Conclusion

Based on the findings presented above, all data should be accepted without condition except for the groundwater sample collected from MW-5. The laboratory note about possible carryover implies the concentrations may or may not be attributable to this sample. It is recommended that the MW-5 data be used as presented for the current assessment and that additional sampling be performed to confirm that these compounds are present at that location. Other deviations noted do not affect the overall findings of this assessment.

Respectfully Submitted.

Alan Liptak, EP

Project Quality Assurance Officer

Data Validation Summary Table Soil Samples 1705 Route 128, Westford, Vermont LEE #19-138

Sample Name	UST-1	Dup UST-1	Trip Blank	SB-1	SB-2S	SB-2D	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5	Trip Blank
Lab sample number	211268.01	211268.02	211268.03	211572.01	211572.02	211572.03	211572.04	211572.05	211572.06	211572.07	211572.08	211572.09	211572.1
Date Sampled	6/2/20	6/2/20	6/2/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20
Date of Analysis					6/9-6/15/20 (VO	Cs); 6/8-6/15/20 (P/	AHs); 6/16/20 (PCBs)	; 6/8-6/16/20 (meta	als); 6/8/20 (TPH)				
Sample Type	Soil	Soil	Methanol	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Methanol
Was analysis completed within EPA Method specified holding time?	Y	Y	Y	Υ	Y	Y	Υ	Υ	Y	Υ	Y	Υ	Υ
Were the samples properly handled under COC guidelines?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Were the samples properly chilled? (0-6 degrees C)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Were any compounds detected in blanks?	N	N	N	N	N	N	N	N	N	N	N	N	N
Were the samples properly labeled?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Relative Percent Difference (RPD) acceptable? (<=50% RPD)	Y	Y	N/A	N/A	N/A	N/A	N/A	N/A	Y	N/A	N/A	Y	N/A
Were laboratory surrogate recovery concentrations acceptable?	Y(1)	Y(1)	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Υ
Were laboratory control samples and duplicates acceptable?	Y(2)	Y(2)	Y(2)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)	Y(4,5)
Reporting limits meet Form K values	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Are reporting limits below applicable standards?	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)	Y(3)

Notes:

Y=Yes, N=No, N/A=Not applicable to sample

- Y(1)=Surrogates 4-Bromofluorobenzene and 1,2-Dichloroethane-d4 demonstrated recovery outside of the acceptance control limits due to non target sample matrix interference
- Y(2)= Yes, except IsoPropylbenzene, 1,3,5-TMB, 1,2,4-TMB, sec-Butylbenzene, p-Isopropyltoluene exhibited recovery outside the acceptance limits in the quality control sample. The analytes were detected in the samples.
- Y(3) = yes except as noted in Form K
- Y(4) = Bromomethane exhibited recovery outside acceptance limits in the quality control sample. The analyte was not detected in the samples.

 Y(5) = Isopropylbenzene and 2,2-dichloropropane exhibited recovery outside acceptance limits in the quality control sample. The analytes were detected in the sample.

Relative Percent Difference Calculations Soil Samples 1705 Route 128, Westford, Vermont

Soil Sample	UST-1	Duplicate	Relative	SB-5	Duplicate	Relative
Sample Depth (ft.)	ć	5	Percent	9-	10	Percent
PID reading (ppm)	1,6	44	Difference	2.	7	Difference
Sample Date	6/2	/20	(%)	6/5	/20	(%)
VOCs, EPA Method 8260C (mg/kg)						
Dichlorodifluoromethane	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
Chloromethane	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
Vinyl Chloride	ND<0.03	ND<0.02	-	ND<0.02	ND<0.03	-
Bromomethane	ND<0.2	ND<0.2	-	ND<0.1	ND<0.1	-
Chloroethane	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
Trichlorofluoromethane	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
Diethyl Ether	ND<0.06	ND<0.06	-	ND<0.06	ND<0.7	-
Acetone	ND<3	ND<2	-	ND<2	ND<3	-
1 ,1-Dichloroethene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Methylene chloride	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
Carbon disulfide	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
MTBE	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	-
trans-1,2-Dichloroethene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,1-Dichloroethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
2,2-Dichloropropane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
cis-1,2-Dichloroethene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
2-Butanone(MEK)	ND<0.6	ND<0.6	-	ND<0.6	ND<0.7	-
Bromochloromethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Tetrahydrofuran(THF)	ND<0.6	ND<0.6	-	ND<0.6	ND<0.7	-
Chloroform	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,1,1-Trichloroethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Carbon tetrachloride	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,1-Dichloropropene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Benzene	43	32	15	ND<0.06	ND<0.07	-
1,2-Dichloroethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Trichloroethene (TCE)	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2-Dichloropropane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Dibromomethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Bromodichloromethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
4-Methyl-2-pentanone(MIBK)	ND<0.6	ND<0.6	-	ND<0.6	ND<0.7	-
cis-1,3-Dichloropropene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Toluene	610	520	-	ND<0.06	ND<0.07	-
trans-1,3-Dichloropropene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-

Relative Percent Difference Calculations Soil Samples

1705 Route 128, Westford, Vermont

Soil Sample	UST-1	Duplicate	Relative	SB-5	Duplicate	Relative
Sample Depth (ft.)		5	Percent	9-:	=	Percent
PID reading (ppm)		544	Difference	2.		Difference
Sample Date	-	/20	(%)	6/5		(%)
VOCs, EPA Method 8260C (mg/kg)		, = -	(,,)	-, -,	, = -	(70)
1,1,2-Trichloroethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
2-Hexanone	ND<0.1	ND<0.1	_	ND<0.1	ND<0.1	_
Tetrachloroethene (PCE)	ND<0.06	ND<0.06	_	ND<0.06	ND<0.07	_
1,3-Dichloropropane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	_
Dibromochloromethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2-Dibromoethane(EDB)	ND<0.03	ND<0.02	-	ND<0.02	ND<0.03	-
Chlorobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,1,1,2-Tetrachloroethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Ethylbenzene	150	120	11	ND<0.06	ND<0.07	-
mp-Xylene	700	620	6	ND<0.06	ND<0.07	-
o-Xylene	280	250	6	ND<0.06	ND<0.07	-
Styrene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Bromoform	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
IsoPropylbenzene	14	16	7	ND<0.06	ND<0.07	-
Bromobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,1,2,2-Tetrachloroethane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2,3-Trichloropropane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
n-Propylbenzene	46	37	11	ND<0.06	ND<0.07	-
2-Chlorotoluene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
4-Chlorotoluene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,3,5-trimethylbenzene	86	70	10	ND<0.06	ND<0.07	-
tert-Butylbenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2,4-trimethylbenzene	340	330	1	ND<0.06	ND<0.07	-
sec-Butylbenzene	4.7	4.8	1	0.13	ND<0.07	-
1,3-Dichlorobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
p-Isopropyltoluene	2.6	2.7	2	0.098	ND<0.07	-
1,4-Dichlorobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2-Dichlorobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
n-Butylbenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2-Dibromo-3-chloropropane	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
1,2,4-Trichlorobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Hexachlorobutadiene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-
Naphthalene	54	43	11	ND<0.1	ND<0.01	-
1,2,3-Trichlorobenzene	ND<0.06	ND<0.06	-	ND<0.06	ND<0.07	-

Relative Percent Difference Calculations Soil Samples

1705 Route 128, Westford, Vermont

Soil Sample	UST-1	Duplicate	Relative	SB-5	Duplicate	Relative
Sample Depth (ft.)	ϵ	5	Percent	9-	10	Percent
PID reading (ppm)	1,6	44	Difference	2.	7	Difference
Sample Date	6/2,	/20	(%)	6/5,	/20	(%)
PAH EPA Method 8270 (mg/kg)						
Naphthalene	3.5	3.4	1	ND<0.009	ND<0.009	-
2-Methylnaphthalene	2.6	2.5	2	ND<0.009	ND<0.009	-
1-Methylnaphthalene	1.2	1.2	0	ND<0.009	ND<0.009	-
Acenaphthylene	0.042	0.036	8	ND<0.009	ND<0.009	-
Acenaphthene	0.011	0.010	5	ND<0.009	ND<0.009	-
Fluorene	0.028	0.026	4	ND<0.009	ND<0.009	-
Phenanthrene	0.066	0.061	4	ND<0.009	ND<0.009	-
Anthracene	0.016	0.015	3	ND<0.009	ND<0.009	-
Fluoranthene	0.079	0.079	0	0.0090	0.011	10
Pyrene	0.082	0.084	1	ND<0.009	ND<0.009	-
Benzo(a)anthracene	0.041	0.041	0	ND<0.009	ND<0.009	-
Chrysene	0.047	0.046	1	ND<0.009	ND<0.009	-
Benzo(b)fluoranthene	0.087	0.083	2	ND<0.009	ND<0.009	-
Benzo(k)fluoranthene	0.033	0.031	3	ND<0.009	ND<0.009	-
Benzo(a)pyrene	0.067	0.064	2	ND<0.009	ND<0.009	-
Indeno(1,2,3-cd)pyrene	0.066	0.059	6	ND<0.009	ND<0.009	-
Dibenz(a,h)anthracene	0.013	0.012	4	ND<0.009	ND<0.009	-
Benzo(g,h,i)perylene	0.068	0.061	5	ND<0.009	ND<0.009	-

Soil Sample	UST-1	Duplicate	Relative	SB-5	Duplicate	Relative
Sample Depth (ft.)		6	Percent	9-	10	Percent
PID reading (ppm)	1,6	544	Difference	2.	.7	Difference
Sample Date	6/2	2/20	(%)	6/5	:/20	(%)
TOTAL METALS, EPA Method 6020	(mg/kg, dry)				
Total Arsenic	8.4	6.9	10	6.4	6.9	4
Total Barium	130	140	4	140	140	0
Total Cadmium	0.56	0.52	4	ND<0.5	ND<0.5	-
Total Chromium	39	42	4	35	39	5
Total Lead	68	56	10	14	18	13
Total Mercury	0.11	ND<0.1	-	ND<0.1	ND<0.1	-
Total Selenium	ND<0.5	ND<0.5	-	ND<0.5	ND<0.5	-
Total Silver	ND<0.5	ND<0.5	-	ND<0.5	ND<0.5	-

Data Validation Summary Table Groundwater and Drinking Water Samples 1705 Route 128, Westford, Vermont LEE #19-138

Sample Name	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate	Trip Blank	DWS-1
Lab sample number	211876.01	211876.02	211876.03	211876.04	211876.05	211876.06	211876.07	211876.01
Date Sampled	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	5/26/20	6/17/20
Date of Analysis		•		6/25/20 (VOCs);	6/23/20 (metals)		•	
Sample Type	GW	GW	GW	GW	GW	GW	DI Water	Drinking Water
Was analysis completed within EPA Method specified holding time?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Were the samples properly handled under COC guidelines?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Were the samples properly chilled? (0-6 degrees C)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Were any compounds detected in blanks?	N	N	N	N	N	N	N	N
Were the samples properly labeled?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Relative Percent Difference (RPD) acceptable? (<=30% RPD)	Υ	N/A	N/A	N/A	N/A	Υ	N/A	N/A
Were laboratory surrogate recovery concentrations acceptable?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Were laboratory control samples and duplicates acceptable?	Y (6)	Y (1)	Y (6)	Y (6)	Y(5)	Y (6)	Υ	Υ
Reporting limits meet Form K values	Y (2,4)	Υ	Υ	Υ	Υ	Y (2,4)	Υ	Υ
Are reporting limits below applicable standards?	Y (2,3.4)	Y(2)	Y(2)	Y(2)	Y(2)	Y (2,3,4)	Y(2)	Y(2)

Notes:

Y=Yes, N=No, N/A=Not applicable to sample; GW = groundwater;

Y(1) = the following compounds exhibited recovery outside of acceptance limits in the quality control sample: Acetone, n-Propylbenzene, 1,3,5-TMB, tert-Butylbenzene, 1,2,4-TMB, sec-Butylbenzene, Naphthalene

Y(2) = except as noted in Form K

- Y(3) = Concentrations of Selenium may be elevated due to matrix interference. Reported concentrations were well below VGES
- Y(4) = Several VOC reporting limits exceeded Form K values and applicable standards due to dilution, which was due to high concentrations of petroleum VOCs in the samples
- Y(5) = Acetone, 1,2,4-TMB, Naphthalene exhibited recovery outside of acceptance limits in the quality control sample. Additionally, reported VOC concentrations may be the result of carryover from duplicate sample
- Y(6) = Bromoform exhibited recovery outside acceptance limits in the quality control sample. The analyte was not detected in the samples.

Relative Percent Difference Calculations Groundwater Samples 1705 Route 128, Westford, Vermont

Sample	MW-1	Duplicate	Relative %
Sample Date	6/17	7/20	Difference
VOCs, EPA Method 8260C (mg/kg)			
Dichlorodifluoromethane	ND<200	ND<200	-
Chloromethane	ND<200	ND<200	-
Vinyl Chloride	ND<100	ND<100	-
Bromomethane	ND<200	ND<200	-
Chloroethane	ND<200	ND<200	-
Trichlorofluoromethane	ND<200	ND<200	-
Diethyl Ether	ND<200	ND<200	-
Acetone	ND<1000	ND<1000	-
1 ,1-Dichloroethene	ND<50	ND<50	-
Methylene chloride	ND<100	ND<100	-
Carbon disulfide	ND<200	ND<200	-
МТВЕ	2,100	2,100	0
trans-1,2-Dichloroethene	ND<100	ND<100	-
1,1-Dichloroethane	ND<100	ND<100	-
2,2-Dichloropropane	ND<100	ND<100	-
cis-1,2-Dichloroethene	ND<100	ND<100	-
2-Butanone(MEK)	ND<1,000	ND<1,000	-
Bromochloromethane	ND<100	ND<100	-
Tetrahydrofuran(THF)	ND<1,000	ND<1,000	-
Chloroform	ND<100	ND<100	-
1,1,1-Trichloroethane	ND<100	ND<100	-
Carbon tetrachloride	ND<100	ND<100	-
1 ,1-Dichloropropene	ND<100	ND<100	-
Benzene	14,000.	13,000.	4
1,2-Dichloroethane	ND<100	ND<100	-
Trichloroethene (TCE)	ND<100	ND<100	-
1,2-Dichloropropane	ND<100	ND<100	-
Dibromomethane	ND<100	ND<100	-
Bromodichloromethane	ND<50	ND<50	-
4-Methyl-2-pentanone(MIBK)	ND<1,000	ND<1,000	-
cis-1,3-Dichloropropene	ND<50	ND<50	-
Toluene	34,000	34,000	0
trans-1,3-Dichloropropene	ND<50	ND<50	-

Relative Percent Difference Calculations Groundwater Samples 1705 Route 128, Westford, Vermont

Soil Sample	MW-1	Duplicate	Relative %
Sample Date	6/17	7/20	Difference
VOCs, EPA Method 8260C (mg/kg)			
1,1,2-Trichloroethane	ND<100	ND<100	-
2-Hexanone	ND<1,000	ND<1,000	-
Tetrachloroethene (PCE)	ND<100	ND<100	-
1,3-Dichloropropane	ND<100	ND<100	-
Dibromochloromethane	ND<100	ND<100	-
1,2-Dibromoethane(EDB)	ND<50	ND<50	-
Chlorobenzene	ND<100	ND<100	-
1,1,1,2-Tetrachloroethane	ND<100	ND<100	-
Ethylbenzene	3,900	4,000	1
mp-Xylene	13,000	14,000	4
o-Xylene	6,000	6,300	2
Styrene	ND<100	ND<100	-
Bromoform	ND<200	ND<200	-
IsoPropylbenzene	120	140	8
Bromobenzene	ND<100	ND<100	-
1,1,2,2-Tetrachloroethane	ND<100	ND<100	-
1,2,3-Trichloropropane	ND<50	ND<50	-
n-Propylbenzene	330	380	7
2-Chlorotoluene	ND<100	ND<100	-
4-Chlorotoluene	ND<100	ND<100	-
1,3,5-trimethylbenzene	770	890	7
tert-Butylbenzene	ND<100	ND<100	-
1,2,4-trimethylbenzene	2,900	3,200	5
sec-Butylbenzene	ND<100	ND<100	-
1,3-Dichlorobenzene	ND<100	ND<100	-
p-Isopropyltoluene	ND<100	ND<100	-
1,4-Dichlorobenzene	ND<100	ND<100	-
1,2-Dichlorobenzene	ND<100	ND<100	-
n-Butylbenzene	ND<100	ND<100	-
1,2-Dibromo-3-chloropropane	ND<20	ND<20	-
1,3,5-Trichlorobenzene	ND<100	ND<100	=
1,2,4-Trichlorobenzene	ND<100	ND<100	-
Hexachlorobutadiene	ND<50	ND<50	-
Naphthalene	640	690	4
1,2,3-Trichlorobenzene	ND<50	ND<50	-

Relative Percent Difference Calculations Groundwater Samples

1705 Route 128, Westford, Vermont

Soil Sample	MW-1	Duplicate	Relative %				
Sample Date	6/17	7/20	Difference				
TOTAL METALS, EPA Method 6020 (mg/l)							
Total Arsenic	0.017	0.017	0				
Total Barium	1.6	1.6	0				
Total Cadmium	0.0012	0.0012	0				
Total Chromium	0.022	0.024	4				
Total Lead	0.12	0.12	0				
Total Mercury	ND<0.0001	ND<0.0001	-				
Total Selenium	0.0047	0.0034	16				
Total Silver	ND<0.001	ND<0.001	-				

Appendix G

Underground Storage Tank Removal Report

21 North Main Street • Waterbury, Vermont 05676 Phone: (802) 917-2001 • www.leenv.net

June 25, 2020

Sue Thayer
Department of Environmental Conservation
Waste Management and Prevention Division
Storage Tank Section
Davis Building - 1st Floor
One National Life Drive
Montpelier, VT 05620-3704

Re: UST Removal Report, Pigeon Property, 1705 Route 128, Westford, Vermont Facility ID #5557263, SMS #2019-4863

Dear Ms. Thayer:

On June 2, 2020, LE Environmental LLC (LEE) conducted an environmental assessment of an abandoned, 1,100-gallon, gasoline underground storage tank (UST) at the referenced location (Site Location Map attached). LEE also collected soil samples from under the UST, pursuant to the approximately Brownfields Phase II Environmental Site Assessment (ESA) Site-Specific Quality Assurance Plan (SSQAPP).

The UST was a relic of the former gasoline filling station that operated on the Site from circa 1940 through the early 1980s. A geophysical investigation conducted in relation to the Brownfields Phase II ESA revealed the presence of a potential UST. LEE arranged for and oversaw the UST removal and sampling. US Ecology of Williston, Vermont performed the excavation, UST cleaning and removal, backfilling, and waste disposal.

The age of the UST and piping is not known, but it appeared to be at least 80 years old. The owner was not aware there were any USTs left in the ground, and he remembered tanks being removed from the Site sometime in the 1980s or 1990s. The UST was a single-walled tank, and piping from other former USTs was also encountered in the excavation. The piping for the removed UST appeared to have been cut near the former pump island, and had paper stuffed in the end. It was buried approximately 1.5' to 2' below grade, and was found to be in failed condition upon removal, with extensive rust, pitting, and several large holes in the bottom of the UST. The UST was cleaned in place. Approximately 330 gallons of gasoline and water was pumped from the UST, and one 55-gallon drums of sludge was recovered during the cleaning. The UST bottom was at 6' below grade. The excavation measured 20' wide, 10' long and 6' deep upon completion. Groundwater was encountered at 6' below grade, and a sheen was noted on the groundwater.

Eleven soil samples were collected for field screening of volatile vapors using a calibrated Mini-RAE Lite photoionization detector equipped with a 10.6 eV bulb (PID). Soils consisted of sand and silt fill overlaying native clay. The PID readings ranged from 17.1 parts per million (ppm) in soil under the former dispenser island to 2,374 ppm at the top of the tank

UST Removal Report 1705 Route 128 Westford, Vermont June 25, 2020 Page 2 of 5

where piping (not attached to this tank) was found. PID readings ranging from 1,286 ppm to 1644 ppm were observed under the UST, which was also where groundwater was encountered. The sample locations are shown on the attached sketch.

Sample ID	Location	Depth	PID Reading
SS-1	Top of Tank	0.5 feet	705.4 ppm
SS-2	Top of Tank	1.5 feet	61.0 ppm
SS-3	Under Dispenser	1.5 feet	17.1 ppm
SS-4	Side of Tank	2.5 feet	926.2 ppm
SS-5	Top of Tank	1.5 feet	2,374 ppm
SS-6	Side of Tank	1.5 feet	212.4 ppm
SS-7	Side of Tank	2.5 feet	755.8 ppm
SS-8	Side of Tank	2.5 feet	1,440 ppm
SS-9*	Bottom of Tank	6 feet	1,644 ppm
SS-10	Bottom of Tank	6 feet	1,624 ppm
SS-11	Bottom of Tank	6 feet	1,286 ppm

The soil sample with an asterisk was submitted to Eastern Analytical Inc. of Concord, NH for analysis of VOCs, polycyclic aromatic hydrocarbons, and RCRA 8 metals as part of the Brownfields Phase II ESA. The lab results are attached to this letter.

While on site, LEE performed a review of potential sensitive receptors. The indoor air space of the garage and the basement of the on-Site residence were screened for VOCs with the PID. No readings above background were encountered in the structures. The Site has a shallow well, located approximately 250' northwest of the former UST location. A drinking water sample was obtained, and the results will be forthcoming. Five monitoring wells were installed on the Site pursuant to the approved SSQAPP for the Brownfields Phase II ESA. The results of the monitoring well sampling are also forthcoming. According to the ANR Atlas, there are approximately 28 drilled wells within ¼ mile. The nearest bodies of water are an unnamed stream approximately 200' northwest, and the Browns River approximately 450' northeast of the former UST.

Further recommendations for additional testing and/or remediation due to the failed UST will be provided in the Brownfields Phase II ESA report. Please feel free to call with any questions.

Sincerely,

Angela Emerson, PG, EP

Senior Geologist

Photo #1

Piping at top of UST

UST upon removal

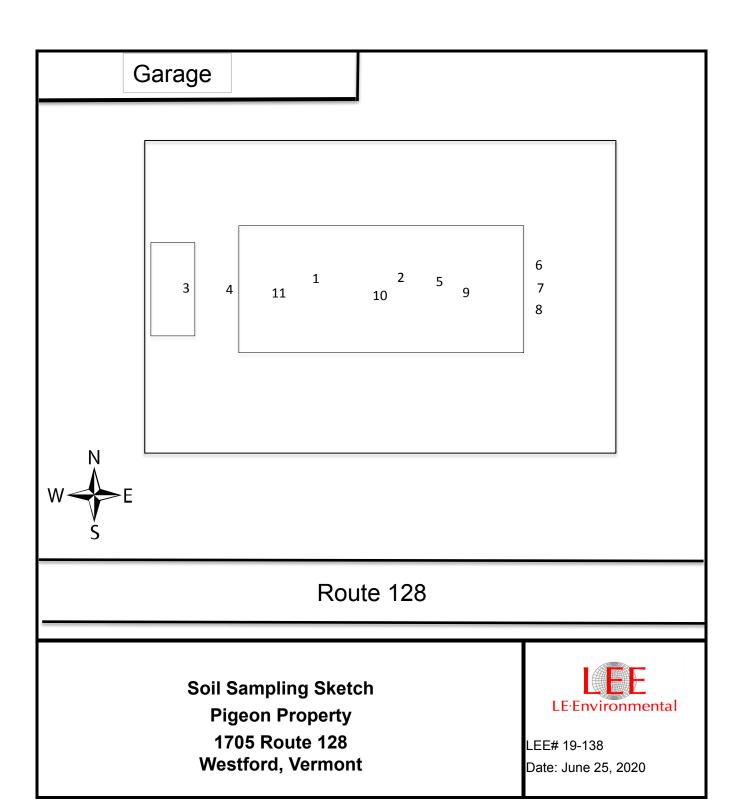
UST Removal Report 1705 Route 128 Westford, Vermont June 25, 2020 Page 4 of 5

UST upon removal

Photo #4

Holes in bottom of UST

Photo #5



Bottom of UST

Photo #6

Miscellaneous piping removed from excavation

Vermont Underground Storage Tank and Piping Closure Form

Agency of Natural Resources, Department of Environmental Conservation Waste Management and Prevention Division http://dec.vermont.gov/waste-management

Page 1 of 3

comme	ncement of		se call 802-	with the Underground Stor 828-1138. <u>Any release</u> mus	-	•	
Facility	ID #:		SMS	# (if applicable):	Spi	# (if applicable):	
Name c	of WMPD st	aff that the r	elease/spi	II was reported to:		Date:	
То		•		1S# or Spill # please use ERT: please contact the UST Prog	•		•
Sectio	n A. Facil	ity/Owner	ship Info	ormation_			
FACILIT	Y NAME: _				# of emplo	oyee's	_
Street(E	911) Addre	ess:			City/Town	:	
Co		ndustrial; leral; Bu		ales; Residential; tate	_ Institutional;	: Farm (includes fish h	natcheries, tree
Owner		lress:					
Contact Contact	: (if differen : Email:	t from owne	r):		Contac		
Sectio	n B. Closi	ıre Inform	ation				
				d? UST system:; Tai ; Replacement:; A			
UST #	Product	Size (gal)	Tank Age	Tank condition (excellent, good, fair, poor)	Piping Age	Piping condition (excellent, good, fair, poor)	Proximity (ft.) of tanks to bldgs / structures
				 T # Authorized by: _ ce (<i>Water is not allowed</i>):			
Disposa	ıl/destructio	on of remove	ed UST(s) L	ocation:	Method:	Date:	
Tank cle Certified	eaning com d hazardou	pany: s waste haul	er:	d from USTs:		(must be trained in	confine space entry)
Tank co	ntents are h	azardous wa	stes and m	ust be handled as such unl	ess recovered a	s usable product; sludge a	nd solids are not

usable/recyclable products and must be handled as hazardous waste. Please contact the Hazardous Waste program with any

Form Revised 10/26/2018

questions 802-828-1138.

Vermont Underground Storage Tank and Piping Closure Form

Agency of Natural Resources, Department of Environmental Conservation Waste Management and Prevention Division http://dec.vermont.gov/waste-management

Page 2 of 3

Facility	ID#		
Facility	ID#		

Depth

Excavation

Tank #,

Section C. Initial Site Characterization (Work in this section must be completed by a professional environmental consultant or hydrogeologist with experience in environmental sampling for the presence of hazardous materials. A UST closure assessment report from the consultant must accompany this form.

Please refer to Sites managements Section I-Rule effective 7/27/2017 for soils management: http://dec.vermont.gov/sites/dec/files/wmp/Sites/07.11.2017.Adopted.Rule .for .SOS .filing.pdf

Peak

Excavation Information. Some removals require more than one excavation. Identify as A, B, C, etc.

excavation A,B,C	(ft.)	size (sq. ft.)	PID reading	Depth of Peak (ft.)	Avg. PID reading	Bedrock depth (ft.)	Groundwater? (Y/N) and depth	Soil type
Locate all	reading	s and samp	les on a si	ite diagran	n and subn	nit with this fo	orm and site asse	essment
Dig Safe # _		PIC) Make:		Model:	Calibrati	on (date/time/gas)	
•						•	cate soil pile on site 2017.Adopted.Rule .for .	9
Polyencapsu	ulated soil	s PID range >	· zero:	ppm to	p	pm		
Have any so	ils been t	ransported of	f site?	NO;YES	S. If Yes, # cu	ubic yds:	Fordisposal,	treatment
						/: mp/Sites/07.11.2017	 '.Adopted.Rule .for .SOS	_filing.pdf
Number of	soil sampl	es collected f	or laborato	ry analysis: _	, Re	sults due date: _		
Amount of s	soil backfi	lled (cubic yd	s.):	PI	ID range > z	ero:ppm t	toppm	
Have limits	of soil cor	ntamination b	een define	d?NO; _	YES. Oth	ner on-site conta	amination?NO	;YES
Is contamina	ation in co	ontact with bu	uilding four	ndation?	_No;Ye	es, If Yes, PID rea	ading;ppm	
		• .		~		ne;dirt floo		
Was the ind	oor air of	the onsite bu	ilding scree	ened with a F	PID?N	O;YES, if YE	S PID reading:	ppm
Free Phase p	oroduct e	ncountered? .	NO;	YES. Thick	ness:	Sheen pre	sent:NO;	YES
Groundwater encountered?NO;YES Depth: Sample collected?NO;YES								
Are there existing monitoring wells on-site?NO;YES. How many? (Locate on site diagram)								
Have new monitoring wells been installed?NO;YES (Locate on site diagram). Headspace PID readings:								
Groundwate	er samples	s obtained fro	m monitor	ing wells for	lab analysis?	?NO;N	/ES. Results due dat	e:
Is there a wa	ater suppl	y well on site	? NO	;YES.	Туре:	Shallow;Ro	ock;Spring	
Was a samp	le collecte	ed from the s	upply well f	or lab analys	sis?NO;	Yes. Result	ts due date:	
Receptors in	mpacted: _.	Soil;	_Indoor Air;	; Ambie	ent Air;0	Groundwater;	Surface Water;	Water Supply

Vermont Underground Storage Tank and Piping Closure Form

Agency of Natural Resources, Department of Environmental Conservation Waste Management and Prevention Division http://dec.vermont.gov/waste-management

Page 3 of 3

Facility ID	
-------------	--

Section D: Tanks and Piping Remaining or to be Installed.

Regardless of size or use, list all USTs and ASTs currently at facility or to be installed at facility. For "Tank Status," indicate "abandoned," "in use," or "to be installed*." This includes any UST/ASTs used to store fuel for heat at a public building or a residence.

*Note: Some installations may require permits and prior notice to the UST Program. Please call the UST Program with any questions 802-828-1138.

Tank #	UST or AST?	Product	Size (gallons)	Tank Use (heat, backup generator, etc)	Tank age	Tank Status	Piping age	Piping Status

Section E. Statements of UST closure compliance

l,	, as the environmental consultant on-s	ite, I hereby
	requirements were performed in accordance with D ave provided on this form is true and correct to the b	. ,
Signature:		
Company:	Telephone#:	
Date of Assessment:	Date of Closure:	

Return this form along with complete narrative report and photographs to the Department of Environmental Conservation (DEC), Underground Storage Tank Program within 3**0 days of closure**. Do not delay submission of the site assessment report.

An electronic version of the report from an environmental consultant covering all aspects of closure and site assessment, complete with photographs and any other relevant data, must accompany this form and be emailed to WMPD or uploaded on the WMPD FTP server. Please DO NOT SUBMIT PAPER COPIES. All procedures must be conducted by qualified personnel, to include training required by 29 CFR 1910.120. Documentation of all methods and materials used must be adequate. All work must be performed in compliance with DEC policy "UST Closure and Site Assessment Requirements" as well as all applicable statutes, rules, and additional policies. The DEC may reject inadequate closure forms and reports.